ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.14347
11
11

CamLessMonoDepth: Monocular Depth Estimation with Unknown Camera Parameters

27 October 2021
Sai Shyam Chanduri
Zeeshan Khan Suri
Igor Vozniak
Christian Müller
    MDE
ArXivPDFHTML
Abstract

Perceiving 3D information is of paramount importance in many applications of computer vision. Recent advances in monocular depth estimation have shown that gaining such knowledge from a single camera input is possible by training deep neural networks to predict inverse depth and pose, without the necessity of ground truth data. The majority of such approaches, however, require camera parameters to be fed explicitly during training. As a result, image sequences from wild cannot be used during training. While there exist methods which also predict camera intrinsics, their performance is not on par with novel methods taking camera parameters as input. In this work, we propose a method for implicit estimation of pinhole camera intrinsics along with depth and pose, by learning from monocular image sequences alone. In addition, by utilizing efficient sub-pixel convolutions, we show that high fidelity depth estimates can be obtained. We also embed pixel-wise uncertainty estimation into the framework, to emphasize the possible applicability of this work in practical domain. Finally, we demonstrate the possibility of accurate prediction of depth information without prior knowledge of camera intrinsics, while outperforming the existing state-of-the-art approaches on KITTI benchmark.

View on arXiv
Comments on this paper