ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.14753
  4. Cited By
Subtleties in the trainability of quantum machine learning models

Subtleties in the trainability of quantum machine learning models

27 October 2021
Supanut Thanasilp
Samson Wang
Nhat A. Nghiem
Patrick J. Coles
M. Cerezo
ArXivPDFHTML

Papers citing "Subtleties in the trainability of quantum machine learning models"

13 / 13 papers shown
Title
Investigating and Mitigating Barren Plateaus in Variational Quantum Circuits: A Survey
Investigating and Mitigating Barren Plateaus in Variational Quantum Circuits: A Survey
Jack Cunningham
Jun Zhuang
32
4
0
25 Jul 2024
On the relation between trainability and dequantization of variational quantum learning models
On the relation between trainability and dequantization of variational quantum learning models
Elies Gil-Fuster
Casper Gyurik
Adrián Pérez-Salinas
Vedran Dunjko
29
10
0
11 Jun 2024
Variational quantum simulation: a case study for understanding warm starts
Variational quantum simulation: a case study for understanding warm starts
Ricard Puig-i-Valls
Marc Drudis
Supanut Thanasilp
Zoë Holmes
19
20
0
15 Apr 2024
Does provable absence of barren plateaus imply classical simulability?
  Or, why we need to rethink variational quantum computing
Does provable absence of barren plateaus imply classical simulability? Or, why we need to rethink variational quantum computing
M. Cerezo
Martín Larocca
Diego García-Martín
N. L. Diaz
Paolo Braccia
...
Pablo Bermejo
Aroosa Ijaz
Supanut Thanasilp
Eric R. Anschuetz
Zoë Holmes
25
123
0
14 Dec 2023
Theoretical Guarantees for Permutation-Equivariant Quantum Neural
  Networks
Theoretical Guarantees for Permutation-Equivariant Quantum Neural Networks
Louis Schatzki
Martín Larocca
Quynh T. Nguyen
F. Sauvage
M. Cerezo
16
83
0
18 Oct 2022
Theory for Equivariant Quantum Neural Networks
Theory for Equivariant Quantum Neural Networks
Quynh T. Nguyen
Louis Schatzki
Paolo Braccia
Michael Ragone
Patrick J. Coles
F. Sauvage
Martín Larocca
M. Cerezo
20
88
0
16 Oct 2022
Exponential concentration in quantum kernel methods
Exponential concentration in quantum kernel methods
Supanut Thanasilp
Samson Wang
M. Cerezo
Zoë Holmes
11
73
0
23 Aug 2022
Group-Invariant Quantum Machine Learning
Group-Invariant Quantum Machine Learning
Martín Larocca
F. Sauvage
Faris M. Sbahi
Guillaume Verdon
Patrick J. Coles
M. Cerezo
AI4CE
11
116
0
04 May 2022
Generalization in quantum machine learning from few training data
Generalization in quantum machine learning from few training data
Matthias C. Caro
Hsin-Yuan Huang
M. Cerezo
Kunal Sharma
A. Sornborger
L. Cincio
Patrick J. Coles
8
351
0
09 Nov 2021
Generalization in Quantum Machine Learning: a Quantum Information
  Perspective
Generalization in Quantum Machine Learning: a Quantum Information Perspective
L. Banchi
Jason Pereira
S. Pirandola
26
22
0
17 Feb 2021
Information-theoretic bounds on quantum advantage in machine learning
Information-theoretic bounds on quantum advantage in machine learning
Hsin-Yuan Huang
R. Kueng
J. Preskill
63
211
0
07 Jan 2021
Connecting ansatz expressibility to gradient magnitudes and barren
  plateaus
Connecting ansatz expressibility to gradient magnitudes and barren plateaus
Zoë Holmes
Kunal Sharma
M. Cerezo
Patrick J. Coles
118
420
0
06 Jan 2021
Noise-Induced Barren Plateaus in Variational Quantum Algorithms
Noise-Induced Barren Plateaus in Variational Quantum Algorithms
Samson Wang
Enrico Fontana
M. Cerezo
Kunal Sharma
A. Sone
L. Cincio
Patrick J. Coles
119
645
0
28 Jul 2020
1