Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.15832
Cited By
CAN-PINN: A Fast Physics-Informed Neural Network Based on Coupled-Automatic-Numerical Differentiation Method
29 October 2021
P. Chiu
Jian Cheng Wong
C. Ooi
M. Dao
Yew-Soon Ong
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"CAN-PINN: A Fast Physics-Informed Neural Network Based on Coupled-Automatic-Numerical Differentiation Method"
17 / 17 papers shown
Title
Neural refractive index field: Unlocking the Potential of Background-oriented Schlieren Tomography in Volumetric Flow Visualization
Yuanzhe He
Y. Zheng
Shijie Xu
Chang Liu
Di Peng
Yingzheng Liu
Weiwei Cai
AI4CE
21
0
0
23 Sep 2024
Harnessing physics-informed operators for high-dimensional reliability analysis problems
N Navaneeth
Tushar
Souvik Chakraborty
AI4CE
32
0
0
07 Sep 2024
Automatic Differentiation is Essential in Training Neural Networks for Solving Differential Equations
Chuqi Chen
Yahong Yang
Yang Xiang
Wenrui Hao
26
2
0
23 May 2024
Data-Driven Physics-Informed Neural Networks: A Digital Twin Perspective
Sunwoong Yang
Hojin Kim
Y. Hong
K. Yee
R. Maulik
Namwoo Kang
PINN
AI4CE
18
17
0
05 Jan 2024
Adversarial Training for Physics-Informed Neural Networks
Yao Li
Shengzhu Shi
Zhichang Guo
Boying Wu
AAML
PINN
25
0
0
18 Oct 2023
Physics-aware Machine Learning Revolutionizes Scientific Paradigm for Machine Learning and Process-based Hydrology
Qingsong Xu
Yilei Shi
Jonathan Bamber
Ye Tuo
Ralf Ludwig
Xiao Xiang Zhu
AI4CE
18
9
0
08 Oct 2023
Temporal Difference Learning for High-Dimensional PIDEs with Jumps
Liwei Lu
Hailong Guo
Xueqing Yang
Yi Zhu
AI4CE
13
6
0
06 Jul 2023
ParticleWNN: a Novel Neural Networks Framework for Solving Partial Differential Equations
Yaohua Zang
Gang Bao
24
4
0
21 May 2023
Physics-informed Neural Networks with Periodic Activation Functions for Solute Transport in Heterogeneous Porous Media
Salah A. Faroughi
Ramin Soltanmohammad
Pingki Datta
S. K. Mahjour
S. Faroughi
13
22
0
17 Dec 2022
Design of Turing Systems with Physics-Informed Neural Networks
J. Kho
W. Koh
Jian Cheng Wong
P. Chiu
C. Ooi
DiffM
AI4CE
19
2
0
24 Nov 2022
Robustness of Physics-Informed Neural Networks to Noise in Sensor Data
Jian Cheng Wong
P. Chiu
C. Ooi
My Ha Da
27
3
0
22 Nov 2022
A Curriculum-Training-Based Strategy for Distributing Collocation Points during Physics-Informed Neural Network Training
Marcus Münzer
C. Bard
10
4
0
21 Nov 2022
Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in Scientific Computing
Salah A. Faroughi
N. Pawar
C. Fernandes
Maziar Raissi
Subasish Das
N. Kalantari
S. K. Mahjour
PINN
AI4CE
27
48
0
14 Nov 2022
Learning in Sinusoidal Spaces with Physics-Informed Neural Networks
Jian Cheng Wong
C. Ooi
Abhishek Gupta
Yew-Soon Ong
AI4CE
PINN
SSL
16
76
0
20 Sep 2021
Efficient training of physics-informed neural networks via importance sampling
M. A. Nabian
R. J. Gladstone
Hadi Meidani
DiffM
PINN
69
222
0
26 Apr 2021
On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks
Sifan Wang
Hanwen Wang
P. Perdikaris
131
438
0
18 Dec 2020
NVIDIA SimNet^{TM}: an AI-accelerated multi-physics simulation framework
O. Hennigh
S. Narasimhan
M. A. Nabian
Akshay Subramaniam
Kaustubh Tangsali
M. Rietmann
J. Ferrandis
Wonmin Byeon
Z. Fang
S. Choudhry
PINN
AI4CE
91
126
0
14 Dec 2020
1