ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.01602
  4. Cited By
Stochastic Online Linear Regression: the Forward Algorithm to Replace
  Ridge

Stochastic Online Linear Regression: the Forward Algorithm to Replace Ridge

2 November 2021
Reda Ouhamma
Odalric-Ambrym Maillard
Vianney Perchet
ArXivPDFHTML

Papers citing "Stochastic Online Linear Regression: the Forward Algorithm to Replace Ridge"

8 / 8 papers shown
Title
Testing Credibility of Public and Private Surveys through the Lens of
  Regression
Testing Credibility of Public and Private Surveys through the Lens of Regression
Debabrota Basu
Sourav Chakraborty
Debarshi Chanda
Buddha Dev Das
Arijit Ghosh
Arnab Ray
28
0
0
07 Oct 2024
Multivariate Online Linear Regression for Hierarchical Forecasting
Multivariate Online Linear Regression for Hierarchical Forecasting
Massil Hihat
Guillaume Garrigos
Adeline Fermanian
Simon Bussy
18
0
0
22 Feb 2024
Likelihood Ratio Confidence Sets for Sequential Decision Making
Likelihood Ratio Confidence Sets for Sequential Decision Making
N. Emmenegger
Mojmír Mutný
Andreas Krause
24
10
0
08 Nov 2023
A Batch-to-Online Transformation under Random-Order Model
A Batch-to-Online Transformation under Random-Order Model
Jing Dong
Yuichi Yoshida
OffRL
14
1
0
12 Jun 2023
Stochastic Online Instrumental Variable Regression: Regrets for
  Endogeneity and Bandit Feedback
Stochastic Online Instrumental Variable Regression: Regrets for Endogeneity and Bandit Feedback
R. D. Vecchia
D. Basu
11
4
0
18 Feb 2023
Bilinear Exponential Family of MDPs: Frequentist Regret Bound with
  Tractable Exploration and Planning
Bilinear Exponential Family of MDPs: Frequentist Regret Bound with Tractable Exploration and Planning
Reda Ouhamma
D. Basu
Odalric-Ambrym Maillard
OffRL
16
10
0
05 Oct 2022
Optimal Online Generalized Linear Regression with Stochastic Noise and
  Its Application to Heteroscedastic Bandits
Optimal Online Generalized Linear Regression with Stochastic Noise and Its Application to Heteroscedastic Bandits
Heyang Zhao
Dongruo Zhou
Jiafan He
Quanquan Gu
48
2
0
28 Feb 2022
Weighted Linear Bandits for Non-Stationary Environments
Weighted Linear Bandits for Non-Stationary Environments
Yoan Russac
Claire Vernade
Olivier Cappé
82
101
0
19 Sep 2019
1