ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.02155
  4. Cited By
A Johnson--Lindenstrauss Framework for Randomly Initialized CNNs

A Johnson--Lindenstrauss Framework for Randomly Initialized CNNs

3 November 2021
Ido Nachum
Jan Hkazla
Michael C. Gastpar
Anatoly Khina
ArXivPDFHTML

Papers citing "A Johnson--Lindenstrauss Framework for Randomly Initialized CNNs"

2 / 2 papers shown
Title
Deep Networks and the Multiple Manifold Problem
Deep Networks and the Multiple Manifold Problem
Sam Buchanan
D. Gilboa
John N. Wright
166
39
0
25 Aug 2020
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train
  10,000-Layer Vanilla Convolutional Neural Networks
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
220
347
0
14 Jun 2018
1