Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.02338
Cited By
Drop, Swap, and Generate: A Self-Supervised Approach for Generating Neural Activity
3 November 2021
Ran Liu
Mehdi Azabou
M. Dabagia
Chi-Heng Lin
M. G. Azar
Keith B. Hengen
Michal Valko
Eva L. Dyer
OCL
SSL
DRL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Drop, Swap, and Generate: A Self-Supervised Approach for Generating Neural Activity"
6 / 6 papers shown
Title
Your contrastive learning problem is secretly a distribution alignment problem
Zihao Chen
Chi-Heng Lin
Ran Liu
Jingyun Xiao
Eva L. Dyer
135
1
0
27 Feb 2025
The good, the bad and the ugly sides of data augmentation: An implicit spectral regularization perspective
Chi-Heng Lin
Chiraag Kaushik
Eva L. Dyer
Vidya Muthukumar
74
31
0
10 Oct 2022
Self-supervised multimodal neuroimaging yields predictive representations for a spectrum of Alzheimer's phenotypes
A. Fedorov
Eloy P. T. Geenjaar
Lei Wu
Tristan Sylvain
T. DeRamus
Margaux Luck
Maria B. Misiura
R. Devon Hjelm
Sergey Plis
Vince D. Calhoun
31
3
0
07 Sep 2022
Capturing cross-session neural population variability through self-supervised identification of consistent neuron ensembles
Justin Jude
M. Perich
L. Miller
Matthias H Hennig
49
3
0
19 May 2022
Neural Latents Benchmark '21: Evaluating latent variable models of neural population activity
Felix Pei
Joel Ye
D. Zoltowski
Anqi Wu
Raeed H. Chowdhury
...
L. Miller
Jonathan W. Pillow
Il Memming Park
Eva L. Dyer
C. Pandarinath
296
90
0
09 Sep 2021
Unsupervised Learning of Visual Features by Contrasting Cluster Assignments
Mathilde Caron
Ishan Misra
Julien Mairal
Priya Goyal
Piotr Bojanowski
Armand Joulin
OCL
SSL
318
4,107
0
17 Jun 2020
1