Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.03290
Cited By
Maillard Sampling: Boltzmann Exploration Done Optimally
5 November 2021
Jieming Bian
Kwang-Sung Jun
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Maillard Sampling: Boltzmann Exploration Done Optimally"
10 / 10 papers shown
Title
Connecting Thompson Sampling and UCB: Towards More Efficient Trade-offs Between Privacy and Regret
Bingshan Hu
Zhiming Huang
Tianyue H. Zhang
Mathias Lécuyer
Nidhi Hegde
17
0
0
05 May 2025
QuACK: A Multipurpose Queuing Algorithm for Cooperative
k
k
k
-Armed Bandits
Benjamin Howson
Sarah Filippi
Ciara Pike-Burke
34
1
0
31 Oct 2024
Indexed Minimum Empirical Divergence-Based Algorithms for Linear Bandits
Jie Bian
Vincent Y. F. Tan
FedML
19
0
0
24 May 2024
Efficient and Adaptive Posterior Sampling Algorithms for Bandits
Bingshan Hu
Zhiming Huang
Tianyue H. Zhang
Mathias Lécuyer
Nidhi Hegde
18
0
0
02 May 2024
Allocating Divisible Resources on Arms with Unknown and Random Rewards
Ningyuan Chen
Wenhao Li
14
0
0
28 Jun 2023
Kullback-Leibler Maillard Sampling for Multi-armed Bandits with Bounded Rewards
Hao Qin
Kwang-Sung Jun
Chicheng Zhang
27
0
0
28 Apr 2023
A General Recipe for the Analysis of Randomized Multi-Armed Bandit Algorithms
Dorian Baudry
Kazuya Suzuki
Junya Honda
23
4
0
10 Mar 2023
Overcoming Prior Misspecification in Online Learning to Rank
Javad Azizi
Ofer Meshi
M. Zoghi
Maryam Karimzadehgan
13
1
0
25 Jan 2023
Finite-Time Regret of Thompson Sampling Algorithms for Exponential Family Multi-Armed Bandits
Tianyuan Jin
Pan Xu
X. Xiao
Anima Anandkumar
30
12
0
07 Jun 2022
Near-Optimal Algorithms for Differentially Private Online Learning in a Stochastic Environment
Bingshan Hu
Zhiming Huang
Nishant A. Mehta
Nidhi Hegde
FedML
12
1
0
16 Feb 2021
1