Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.04706
Cited By
Bayesian Framework for Gradient Leakage
8 November 2021
Mislav Balunović
Dimitar I. Dimitrov
Robin Staab
Martin Vechev
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Bayesian Framework for Gradient Leakage"
27 / 27 papers shown
Title
A Sample-Level Evaluation and Generative Framework for Model Inversion Attacks
Haoyang Li
Li Bai
Qingqing Ye
Haibo Hu
Yaxin Xiao
Huadi Zheng
Jianliang Xu
64
0
0
26 Feb 2025
Exploring User-level Gradient Inversion with a Diffusion Prior
Zhuohang Li
Andrew Lowy
Jing Liu
T. Koike-Akino
Bradley Malin
K. Parsons
Ye Wang
DiffM
28
0
0
11 Sep 2024
Understanding Data Reconstruction Leakage in Federated Learning from a Theoretical Perspective
Zifan Wang
Binghui Zhang
Meng Pang
Yuan Hong
Binghui Wang
FedML
36
0
0
22 Aug 2024
Efficient Byzantine-Robust and Provably Privacy-Preserving Federated Learning
Chenfei Nie
Qiang Li
Yuxin Yang
Yuede Ji
Binghui Wang
40
1
0
29 Jul 2024
BACON: Bayesian Optimal Condensation Framework for Dataset Distillation
Zheng Zhou
Hong Zhao
Guangliang Cheng
Xiangtai Li
Shuchang Lyu
Wenquan Feng
Qi Zhao
DD
47
0
0
03 Jun 2024
Seeing the Forest through the Trees: Data Leakage from Partial Transformer Gradients
Weijun Li
Qiongkai Xu
Mark Dras
PILM
32
1
0
03 Jun 2024
SPEAR:Exact Gradient Inversion of Batches in Federated Learning
Dimitar I. Dimitrov
Maximilian Baader
Mark Niklas Muller
Martin Vechev
FedML
18
5
0
06 Mar 2024
Inf2Guard: An Information-Theoretic Framework for Learning Privacy-Preserving Representations against Inference Attacks
Sayedeh Leila Noorbakhsh
Binghui Zhang
Yuan Hong
Binghui Wang
AAML
23
8
0
04 Mar 2024
Data Reconstruction Attacks and Defenses: A Systematic Evaluation
Sheng Liu
Zihan Wang
Yuxiao Chen
Qi Lei
AAML
MIACV
59
4
0
13 Feb 2024
Towards Eliminating Hard Label Constraints in Gradient Inversion Attacks
Yanbo Wang
Jian Liang
R. He
AAML
14
5
0
05 Feb 2024
GI-PIP: Do We Require Impractical Auxiliary Dataset for Gradient Inversion Attacks?
Yu Sun
Gaojian Xiong
Xianxun Yao
Kailang Ma
Jian Cui
18
3
0
22 Jan 2024
From Principle to Practice: Vertical Data Minimization for Machine Learning
Robin Staab
Nikola Jovanović
Mislav Balunović
Martin Vechev
34
5
0
17 Nov 2023
Understanding Deep Gradient Leakage via Inversion Influence Functions
Haobo Zhang
Junyuan Hong
Yuyang Deng
M. Mahdavi
Jiayu Zhou
FedML
59
6
0
22 Sep 2023
Expressive variational quantum circuits provide inherent privacy in federated learning
Niraj Kumar
Jamie Heredge
Changhao Li
Shaltiel Eloul
Shree Hari Sureshbabu
Marco Pistoia
FedML
54
8
0
22 Sep 2023
Privacy Preserving Federated Learning with Convolutional Variational Bottlenecks
Daniel Scheliga
Patrick Mäder
M. Seeland
FedML
AAML
18
5
0
08 Sep 2023
Privacy and Fairness in Federated Learning: on the Perspective of Trade-off
Huiqiang Chen
Tianqing Zhu
Tao Zhang
Wanlei Zhou
Philip S. Yu
FedML
27
43
0
25 Jun 2023
Hiding in Plain Sight: Disguising Data Stealing Attacks in Federated Learning
Kostadin Garov
Dimitar I. Dimitrov
Nikola Jovanović
Martin Vechev
AAML
FedML
34
7
0
05 Jun 2023
Surrogate Model Extension (SME): A Fast and Accurate Weight Update Attack on Federated Learning
Junyi Zhu
Ruicong Yao
Matthew B. Blaschko
FedML
8
9
0
31 May 2023
Reconstructing Training Data from Model Gradient, Provably
Zihan Wang
Jason D. Lee
Qi Lei
FedML
14
24
0
07 Dec 2022
Refiner: Data Refining against Gradient Leakage Attacks in Federated Learning
Mingyuan Fan
Cen Chen
Chengyu Wang
Ximeng Liu
Wenmeng Zhou
Jun Huang
AAML
FedML
32
0
0
05 Dec 2022
TabLeak: Tabular Data Leakage in Federated Learning
Mark Vero
Mislav Balunović
Dimitar I. Dimitrov
Martin Vechev
FedML
21
7
0
04 Oct 2022
Accelerated Federated Learning with Decoupled Adaptive Optimization
Jiayin Jin
Jiaxiang Ren
Yang Zhou
Lingjuan Lyu
Ji Liu
Dejing Dou
AI4CE
FedML
19
51
0
14 Jul 2022
Data Leakage in Federated Averaging
Dimitar I. Dimitrov
Mislav Balunović
Nikola Konstantinov
Martin Vechev
FedML
14
28
0
24 Jun 2022
A Survey on Gradient Inversion: Attacks, Defenses and Future Directions
Rui Zhang
Song Guo
Junxiao Wang
Xin Xie
Dacheng Tao
27
36
0
15 Jun 2022
Gradient Obfuscation Gives a False Sense of Security in Federated Learning
Kai Yue
Richeng Jin
Chau-Wai Wong
D. Baron
H. Dai
FedML
26
46
0
08 Jun 2022
Trusted AI in Multi-agent Systems: An Overview of Privacy and Security for Distributed Learning
Chuan Ma
Jun Li
Kang Wei
Bo Liu
Ming Ding
Long Yuan
Zhu Han
H. Vincent Poor
47
42
0
18 Feb 2022
LAMP: Extracting Text from Gradients with Language Model Priors
Mislav Balunović
Dimitar I. Dimitrov
Nikola Jovanović
Martin Vechev
11
56
0
17 Feb 2022
1