ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.04845
  4. Cited By
Hybrid BYOL-ViT: Efficient approach to deal with small datasets

Hybrid BYOL-ViT: Efficient approach to deal with small datasets

8 November 2021
Safwen Naimi
Rien van Leeuwen
W. Souidène
S. B. Saoud
    SSL
    ViT
ArXivPDFHTML

Papers citing "Hybrid BYOL-ViT: Efficient approach to deal with small datasets"

3 / 3 papers shown
Title
Understanding Why ViT Trains Badly on Small Datasets: An Intuitive
  Perspective
Understanding Why ViT Trains Badly on Small Datasets: An Intuitive Perspective
Haoran Zhu
Boyuan Chen
Carter Yang
ViT
17
28
0
07 Feb 2023
CrossTransformers: spatially-aware few-shot transfer
CrossTransformers: spatially-aware few-shot transfer
Carl Doersch
Ankush Gupta
Andrew Zisserman
ViT
201
330
0
22 Jul 2020
Improved Baselines with Momentum Contrastive Learning
Improved Baselines with Momentum Contrastive Learning
Xinlei Chen
Haoqi Fan
Ross B. Girshick
Kaiming He
SSL
238
3,367
0
09 Mar 2020
1