ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.04870
  4. Cited By
A toolkit for data-driven discovery of governing equations in high-noise
  regimes

A toolkit for data-driven discovery of governing equations in high-noise regimes

8 November 2021
Charles B. Delahunt
J. Nathan Kutz
ArXivPDFHTML

Papers citing "A toolkit for data-driven discovery of governing equations in high-noise regimes"

2 / 2 papers shown
Title
Characterization of partial wetting by CMAS droplets using multiphase
  many-body dissipative particle dynamics and data-driven discovery based on
  PINNs
Characterization of partial wetting by CMAS droplets using multiphase many-body dissipative particle dynamics and data-driven discovery based on PINNs
Elham Kiyani
M. Kooshkbaghi
K. Shukla
R. Koneru
Zhen Li
L. Bravo
A. Ghoshal
George Karniadakis
M. Karttunen
AI4CE
17
4
0
18 Jul 2023
Learning Sparse Nonlinear Dynamics via Mixed-Integer Optimization
Learning Sparse Nonlinear Dynamics via Mixed-Integer Optimization
Dimitris Bertsimas
Wes Gurnee
AI4CE
16
40
0
01 Jun 2022
1