ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.05754
  4. Cited By
Prune Once for All: Sparse Pre-Trained Language Models

Prune Once for All: Sparse Pre-Trained Language Models

10 November 2021
Ofir Zafrir
Ariel Larey
Guy Boudoukh
Haihao Shen
Moshe Wasserblat
    VLM
ArXivPDFHTML

Papers citing "Prune Once for All: Sparse Pre-Trained Language Models"

21 / 21 papers shown
Title
FineScope : Precision Pruning for Domain-Specialized Large Language Models Using SAE-Guided Self-Data Cultivation
FineScope : Precision Pruning for Domain-Specialized Large Language Models Using SAE-Guided Self-Data Cultivation
Chaitali Bhattacharyya
Yeseong Kim
45
0
0
01 May 2025
On the Impact of White-box Deployment Strategies for Edge AI on Latency and Model Performance
On the Impact of White-box Deployment Strategies for Edge AI on Latency and Model Performance
Jaskirat Singh
Bram Adams
Ahmed E. Hassan
VLM
36
0
0
01 Nov 2024
MoDeGPT: Modular Decomposition for Large Language Model Compression
MoDeGPT: Modular Decomposition for Large Language Model Compression
Chi-Heng Lin
Shangqian Gao
James Seale Smith
Abhishek Patel
Shikhar Tuli
Yilin Shen
Hongxia Jin
Yen-Chang Hsu
71
6
0
19 Aug 2024
Evaluating Zero-Shot Long-Context LLM Compression
Evaluating Zero-Shot Long-Context LLM Compression
Chenyu Wang
Yihan Wang
Kai Li
49
0
0
10 Jun 2024
How to Prune Your Language Model: Recovering Accuracy on the "Sparsity
  May Cry'' Benchmark
How to Prune Your Language Model: Recovering Accuracy on the "Sparsity May Cry'' Benchmark
Eldar Kurtic
Torsten Hoefler
Dan Alistarh
29
3
0
21 Dec 2023
Fluctuation-based Adaptive Structured Pruning for Large Language Models
Fluctuation-based Adaptive Structured Pruning for Large Language Models
Yongqi An
Xu Zhao
Tao Yu
Ming Tang
Jinqiao Wang
31
42
0
19 Dec 2023
DONUT-hole: DONUT Sparsification by Harnessing Knowledge and Optimizing
  Learning Efficiency
DONUT-hole: DONUT Sparsification by Harnessing Knowledge and Optimizing Learning Efficiency
Azhar Shaikh
Michael Cochez
Denis Diachkov
Michiel de Rijcke
Sahar Yousefi
25
0
0
09 Nov 2023
oBERTa: Improving Sparse Transfer Learning via improved initialization,
  distillation, and pruning regimes
oBERTa: Improving Sparse Transfer Learning via improved initialization, distillation, and pruning regimes
Daniel Fernando Campos
Alexandre Marques
Mark Kurtz
Chengxiang Zhai
VLM
AAML
11
2
0
30 Mar 2023
Sparsity May Cry: Let Us Fail (Current) Sparse Neural Networks Together!
Sparsity May Cry: Let Us Fail (Current) Sparse Neural Networks Together!
Shiwei Liu
Tianlong Chen
Zhenyu (Allen) Zhang
Xuxi Chen
Tianjin Huang
Ajay Jaiswal
Zhangyang Wang
26
29
0
03 Mar 2023
Rotation Invariant Quantization for Model Compression
Rotation Invariant Quantization for Model Compression
Dor-Joseph Kampeas
Yury Nahshan
Hanoch Kremer
Gil Lederman
Shira Zaloshinski
Zheng Li
E. Haleva
MQ
16
0
0
03 Mar 2023
HomoDistil: Homotopic Task-Agnostic Distillation of Pre-trained
  Transformers
HomoDistil: Homotopic Task-Agnostic Distillation of Pre-trained Transformers
Chen Liang
Haoming Jiang
Zheng Li
Xianfeng Tang
Bin Yin
Tuo Zhao
VLM
24
24
0
19 Feb 2023
What Matters In The Structured Pruning of Generative Language Models?
What Matters In The Structured Pruning of Generative Language Models?
Michael Santacroce
Zixin Wen
Yelong Shen
Yuan-Fang Li
18
32
0
07 Feb 2023
Dynamic Sparse Training via Balancing the Exploration-Exploitation
  Trade-off
Dynamic Sparse Training via Balancing the Exploration-Exploitation Trade-off
Shaoyi Huang
Bowen Lei
Dongkuan Xu
Hongwu Peng
Yue Sun
Mimi Xie
Caiwen Ding
21
19
0
30 Nov 2022
Fast DistilBERT on CPUs
Fast DistilBERT on CPUs
Haihao Shen
Ofir Zafrir
Bo Dong
Hengyu Meng
Xinyu. Ye
Zhe Wang
Yi Ding
Hanwen Chang
Guy Boudoukh
Moshe Wasserblat
VLM
16
2
0
27 Oct 2022
Efficient Methods for Natural Language Processing: A Survey
Efficient Methods for Natural Language Processing: A Survey
Marcos Vinícius Treviso
Ji-Ung Lee
Tianchu Ji
Betty van Aken
Qingqing Cao
...
Emma Strubell
Niranjan Balasubramanian
Leon Derczynski
Iryna Gurevych
Roy Schwartz
28
109
0
31 Aug 2022
LightHuBERT: Lightweight and Configurable Speech Representation Learning
  with Once-for-All Hidden-Unit BERT
LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT
Rui Wang
Qibing Bai
Junyi Ao
Long Zhou
Zhixiang Xiong
Zhihua Wei
Yu Zhang
Tom Ko
Haizhou Li
28
61
0
29 Mar 2022
I-BERT: Integer-only BERT Quantization
I-BERT: Integer-only BERT Quantization
Sehoon Kim
A. Gholami
Z. Yao
Michael W. Mahoney
Kurt Keutzer
MQ
91
341
0
05 Jan 2021
The Lottery Ticket Hypothesis for Pre-trained BERT Networks
The Lottery Ticket Hypothesis for Pre-trained BERT Networks
Tianlong Chen
Jonathan Frankle
Shiyu Chang
Sijia Liu
Yang Zhang
Zhangyang Wang
Michael Carbin
148
345
0
23 Jul 2020
Comparing Rewinding and Fine-tuning in Neural Network Pruning
Comparing Rewinding and Fine-tuning in Neural Network Pruning
Alex Renda
Jonathan Frankle
Michael Carbin
222
382
0
05 Mar 2020
Q-BERT: Hessian Based Ultra Low Precision Quantization of BERT
Q-BERT: Hessian Based Ultra Low Precision Quantization of BERT
Sheng Shen
Zhen Dong
Jiayu Ye
Linjian Ma
Z. Yao
A. Gholami
Michael W. Mahoney
Kurt Keutzer
MQ
225
575
0
12 Sep 2019
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language
  Understanding
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
297
6,950
0
20 Apr 2018
1