Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.06283
Cited By
DropGNN: Random Dropouts Increase the Expressiveness of Graph Neural Networks
11 November 2021
Pál András Papp
Karolis Martinkus
Lukas Faber
Roger Wattenhofer
GNN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"DropGNN: Random Dropouts Increase the Expressiveness of Graph Neural Networks"
50 / 98 papers shown
Title
Towards Invariance to Node Identifiers in Graph Neural Networks
Maya Bechler-Speicher
Moshe Eliasof
Carola-Bibiane Schönlieb
Ran Gilad-Bachrach
Amir Globerson
51
1
0
20 Feb 2025
Effects of Random Edge-Dropping on Over-Squashing in Graph Neural Networks
Jasraj Singh
Keyue Jiang
Brooks Paige
Laura Toni
65
1
0
11 Feb 2025
Using Random Noise Equivariantly to Boost Graph Neural Networks Universally
X. Wang
Muhan Zhang
102
0
0
04 Feb 2025
Balancing Efficiency and Expressiveness: Subgraph GNNs with Walk-Based Centrality
Joshua Southern
Yam Eitan
Guy Bar-Shalom
Michael M. Bronstein
Haggai Maron
Fabrizio Frasca
28
0
0
06 Jan 2025
Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements
Haoyang Li
Y. Xu
C. Zhang
Alexander Zhou
Lei Chen
Qing Li
AI4CE
76
0
0
03 Jan 2025
Efficient Link Prediction via GNN Layers Induced by Negative Sampling
Yuxin Wang
Xiannian Hu
Quan Gan
Xuanjing Huang
Xipeng Qiu
David Wipf
56
4
0
31 Dec 2024
On the Utilization of Unique Node Identifiers in Graph Neural Networks
Maya Bechler-Speicher
Moshe Eliasof
Carola-Bibiane Schönlieb
Ran Gilad-Bachrach
Amir Globerson
28
0
0
04 Nov 2024
Sparse Covariance Neural Networks
Andrea Cavallo
Zhan Gao
Elvin Isufi
21
0
0
02 Oct 2024
Flexible Diffusion Scopes with Parameterized Laplacian for Heterophilic Graph Learning
Qincheng Lu
Jiaqi Zhu
Sitao Luan
Xiao-Wen Chang
28
2
0
15 Sep 2024
Efficient Training of Transformers for Molecule Property Prediction on Small-scale Datasets
Shivesh Prakash
33
0
0
07 Sep 2024
Graph Classification via Reference Distribution Learning: Theory and Practice
Zixiao Wang
Jicong Fan
18
0
0
21 Aug 2024
xAI-Drop: Don't Use What You Cannot Explain
Vincenzo Marco De Luca
Antonio Longa
Andrea Passerini
Pietro Lio'
29
0
0
29 Jul 2024
Foundations and Frontiers of Graph Learning Theory
Yu Huang
Min Zhou
Menglin Yang
Zhen Wang
Muhan Zhang
Jie Wang
Hong Xie
Hao Wang
Defu Lian
Enhong Chen
AI4CE
GNN
43
2
0
03 Jul 2024
Revisiting Random Walks for Learning on Graphs
Jinwoo Kim
Olga Zaghen
Ayhan Suleymanzade
Youngmin Ryou
Seunghoon Hong
54
0
0
01 Jul 2024
Synergistic Deep Graph Clustering Network
Benyu Wu
Shifei Ding
Xiao Xu
Lili Guo
Ling Ding
Xindong Wu
28
0
0
22 Jun 2024
Demystifying Higher-Order Graph Neural Networks
Maciej Besta
Florian Scheidl
Lukas Gianinazzi
S. Klaiman
Jürgen Müller
Torsten Hoefler
38
2
0
18 Jun 2024
Scalable Expressiveness through Preprocessed Graph Perturbations
Danial Saber
Amirali Salehi-Abari
22
1
0
17 Jun 2024
A Flexible, Equivariant Framework for Subgraph GNNs via Graph Products and Graph Coarsening
Guy Bar-Shalom
Yam Eitan
Fabrizio Frasca
Haggai Maron
21
1
0
13 Jun 2024
GATE: How to Keep Out Intrusive Neighbors
Nimrah Mustafa
R. Burkholz
28
0
0
01 Jun 2024
FlexiDrop: Theoretical Insights and Practical Advances in Random Dropout Method on GNNs
Zhiheng Zhou
Sihao Liu
Weichen Zhao
22
0
0
30 May 2024
Probabilistic Graph Rewiring via Virtual Nodes
Chendi Qian
Andrei Manolache
Christopher Morris
Mathias Niepert
AI4CE
28
3
0
27 May 2024
Explainable Molecular Property Prediction: Aligning Chemical Concepts with Predictions via Language Models
Zhenzhong Wang
Zehui Lin
Wanyu Lin
Ming Yang
Minggang Zeng
Kay Chen Tan
16
3
0
25 May 2024
Harnessing Collective Structure Knowledge in Data Augmentation for Graph Neural Networks
Rongrong Ma
Guansong Pang
Ling-Hao Chen
AI4CE
33
0
0
17 May 2024
Tackling Prevalent Conditions in Unsupervised Combinatorial Optimization: Cardinality, Minimum, Covering, and More
Fanchen Bu
Hyeonsoo Jo
Soo Yong Lee
Sungsoo Ahn
Kijung Shin
22
3
0
14 May 2024
Relating-Up: Advancing Graph Neural Networks through Inter-Graph Relationships
Qi Zou
Na Yu
Daoliang Zhang
Wei Zhang
Rui Gao
AI4CE
27
1
0
07 May 2024
AnchorGT: Efficient and Flexible Attention Architecture for Scalable Graph Transformers
Wenhao Zhu
Guojie Song
Liangji Wang
Shaoguo Liu
35
0
0
06 May 2024
CORE: Data Augmentation for Link Prediction via Information Bottleneck
Kaiwen Dong
Zhichun Guo
Nitesh V. Chawla
17
0
0
17 Apr 2024
Temporal Generalization Estimation in Evolving Graphs
Bin Lu
Tingyan Ma
Xiaoying Gan
Xinbing Wang
Yunqiang Zhu
Cheng Zhou
Shiyu Liang
24
1
0
07 Apr 2024
Thermal Earth Model for the Conterminous United States Using an Interpolative Physics-Informed Graph Neural Network (InterPIGNN)
M. Aljubran
Roland N. Horne
AI4CE
31
1
0
15 Mar 2024
Representation Learning on Heterophilic Graph with Directional Neighborhood Attention
Qincheng Lu
Jiaqi Zhu
Sitao Luan
Xiaomeng Chang
26
6
0
03 Mar 2024
Expressive Higher-Order Link Prediction through Hypergraph Symmetry Breaking
Simon Zhang
Cheng Xin
Tamal K. Dey
35
1
0
17 Feb 2024
Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products
Guy Bar-Shalom
Beatrice Bevilacqua
Haggai Maron
AI4CE
20
6
0
13 Feb 2024
Improving Subgraph-GNNs via Edge-Level Ego-Network Encodings
Nurudin Alvarez-Gonzalez
Andreas Kaltenbrunner
Vicencc Gómez
12
2
0
10 Dec 2023
Efficient Subgraph GNNs by Learning Effective Selection Policies
Beatrice Bevilacqua
Moshe Eliasof
E. Meirom
Bruno Ribeiro
Haggai Maron
18
13
0
30 Oct 2023
Facilitating Graph Neural Networks with Random Walk on Simplicial Complexes
Cai Zhou
Xiyuan Wang
Muhan Zhang
31
14
0
30 Oct 2023
MAG-GNN: Reinforcement Learning Boosted Graph Neural Network
Lecheng Kong
Jiarui Feng
Hao Liu
Dacheng Tao
Yixin Chen
Muhan Zhang
AI4CE
8
11
0
29 Oct 2023
Artifact-Robust Graph-Based Learning in Digital Pathology
Saba Heidari Gheshlaghi
Milan Aryal
Nasim Yahyasoltani
Masoud Ganji
OOD
17
0
0
27 Oct 2023
Balancing Augmentation with Edge-Utility Filter for Signed GNNs
Ke-Jia Chen
Yaming Ji
Youran Qu
Chuhan Xu
8
0
0
25 Oct 2023
Are GATs Out of Balance?
Nimrah Mustafa
Aleksandar Bojchevski
R. Burkholz
41
4
0
11 Oct 2023
Exponential Quantum Communication Advantage in Distributed Inference and Learning
H. Michaeli
D. Gilboa
Daniel Soudry
Jarrod R. McClean
FedML
11
0
0
11 Oct 2023
Flood and Echo Net: Algorithmically Aligned GNNs that Generalize
Joël Mathys
Florian Grötschla
K. Nadimpalli
Roger Wattenhofer
FedML
44
0
0
10 Oct 2023
Supercharging Graph Transformers with Advective Diffusion
Qitian Wu
Chenxiao Yang
Kaipeng Zeng
Fan Nie
AI4CE
37
6
0
10 Oct 2023
Probabilistically Rewired Message-Passing Neural Networks
Chendi Qian
Andrei Manolache
Kareem Ahmed
Zhe Zeng
Guy Van den Broeck
Mathias Niepert
Christopher Morris
26
11
0
03 Oct 2023
Cooperative Graph Neural Networks
Ben Finkelshtein
Xingyue Huang
Michael M. Bronstein
.Ismail .Ilkan Ceylan
GNN
22
19
0
02 Oct 2023
Pure Message Passing Can Estimate Common Neighbor for Link Prediction
Kaiwen Dong
Zhichun Guo
Nitesh V. Chawla
19
7
0
02 Sep 2023
Rethinking the Power of Graph Canonization in Graph Representation Learning with Stability
Zehao Dong
Muhan Zhang
Philip R. O. Payne
Michael Province
C. Cruchaga
Tianyu Zhao
Fuhai Li
Yixin Chen
30
1
0
01 Sep 2023
Graph Out-of-Distribution Generalization with Controllable Data Augmentation
Bin Lu
Xiaoying Gan
Ze Zhao
Shiyu Liang
Luoyi Fu
Xinbing Wang
Cheng Zhou
19
6
0
16 Aug 2023
The Expressive Power of Graph Neural Networks: A Survey
Bingxue Zhang
Changjun Fan
Shixuan Liu
Kuihua Huang
Xiang Zhao
Jin-Yu Huang
Zhong Liu
40
19
0
16 Aug 2023
Weisfeiler and Lehman Go Paths: Learning Topological Features via Path Complexes
Quang Truong
Peter Chin
GNN
13
7
0
13 Aug 2023
On Exploring Node-feature and Graph-structure Diversities for Node Drop Graph Pooling
Chuang Liu
Yibing Zhan
Baosheng Yu
Liu Liu
Bo Du
Wenbin Hu
Tongliang Liu
14
11
0
22 Jun 2023
1
2
Next