ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.06503
  4. Cited By
AnalogNets: ML-HW Co-Design of Noise-robust TinyML Models and Always-On
  Analog Compute-in-Memory Accelerator

AnalogNets: ML-HW Co-Design of Noise-robust TinyML Models and Always-On Analog Compute-in-Memory Accelerator

10 November 2021
Chuteng Zhou
F. García-Redondo
Julian Büchel
I. Boybat
Xavier Timoneda Comas
S. Nandakumar
Shidhartha Das
A. Sebastian
M. Le Gallo
P. Whatmough
ArXivPDFHTML

Papers citing "AnalogNets: ML-HW Co-Design of Noise-robust TinyML Models and Always-On Analog Compute-in-Memory Accelerator"

7 / 7 papers shown
Title
NeuroSim V1.5: Improved Software Backbone for Benchmarking Compute-in-Memory Accelerators with Device and Circuit-level Non-idealities
NeuroSim V1.5: Improved Software Backbone for Benchmarking Compute-in-Memory Accelerators with Device and Circuit-level Non-idealities
James Read
Ming-Yen Lee
Wei-Hsing Huang
Yuan-Chun Luo
A. Lu
Shimeng Yu
27
0
0
05 May 2025
End-to-End DNN Inference on a Massively Parallel Analog In Memory
  Computing Architecture
End-to-End DNN Inference on a Massively Parallel Analog In Memory Computing Architecture
Nazareno Bruschi
Giuseppe Tagliavini
Angelo Garofalo
Francesco Conti
I. Boybat
Luca Benini
D. Rossi
19
2
0
23 Nov 2022
Impact of L1 Batch Normalization on Analog Noise Resistant Property of
  Deep Learning Models
Impact of L1 Batch Normalization on Analog Noise Resistant Property of Deep Learning Models
Omobayode Fagbohungbe
Lijun Qian
19
0
0
07 May 2022
P2M: A Processing-in-Pixel-in-Memory Paradigm for Resource-Constrained
  TinyML Applications
P2M: A Processing-in-Pixel-in-Memory Paradigm for Resource-Constrained TinyML Applications
Gourav Datta
Souvik Kundu
Zihan Yin
R. T. Lakkireddy
Joe Mathai
A. Jacob
P. Beerel
Akhilesh R. Jaiswal
16
36
0
07 Mar 2022
Implementing Spiking Neural Networks on Neuromorphic Architectures: A
  Review
Implementing Spiking Neural Networks on Neuromorphic Architectures: A Review
Phu Khanh Huynh
M. L. Varshika
A. Paul
Murat Isik
Adarsha Balaji
Anup Das
23
36
0
17 Feb 2022
A Heterogeneous In-Memory Computing Cluster For Flexible End-to-End
  Inference of Real-World Deep Neural Networks
A Heterogeneous In-Memory Computing Cluster For Flexible End-to-End Inference of Real-World Deep Neural Networks
Angelo Garofalo
G. Ottavi
Francesco Conti
G. Karunaratne
I. Boybat
Luca Benini
D. Rossi
14
30
0
04 Jan 2022
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
948
20,214
0
17 Apr 2017
1