Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.07392
Cited By
Edge-Native Intelligence for 6G Communications Driven by Federated Learning: A Survey of Trends and Challenges
14 November 2021
Mohammad M. Al-Quraan
Lina S. Mohjazi
Lina Bariah
A. Centeno
A. Zoha
Sami Muhaidat
Mérouane Debbah
Muhammad Ali Imran
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Edge-Native Intelligence for 6G Communications Driven by Federated Learning: A Survey of Trends and Challenges"
8 / 8 papers shown
Title
Federated Learning: A Cutting-Edge Survey of the Latest Advancements and Applications
Azim Akhtarshenas
Mohammad Ali Vahedifar
Navid Ayoobi
B. Maham
Tohid Alizadeh
Sina Ebrahimi
David López-Pérez
FedML
23
4
0
08 Oct 2023
Enhancing Reliability in Federated mmWave Networks: A Practical and Scalable Solution using Radar-Aided Dynamic Blockage Recognition
Mohammad M. Al-Quraan
A. Zoha
Anthony Centeno
H. Salameh
Sami Muhaidat
Muhammad Ali Imran
Lina S. Mohjazi
8
5
0
22 Jun 2023
Towards Personalized Federated Learning
A. Tan
Han Yu
Li-zhen Cui
Qiang Yang
FedML
AI4CE
180
832
0
01 Mar 2021
Federated Learning for Channel Estimation in Conventional and RIS-Assisted Massive MIMO
Ahmet M. Elbir
Sinem Coleri
24
128
0
25 Aug 2020
Survey of Personalization Techniques for Federated Learning
V. Kulkarni
Milind Kulkarni
Aniruddha Pant
FedML
168
323
0
19 Mar 2020
Threats to Federated Learning: A Survey
Lingjuan Lyu
Han Yu
Qiang Yang
FedML
186
427
0
04 Mar 2020
All Reality: Virtual, Augmented, Mixed (X), Mediated (X,Y), and Multimediated Reality
Steve Mann
Tom A. Furness
Yu Yuan
Jay Iorio
Zixin Wang
16
138
0
20 Apr 2018
Adaptive Federated Learning in Resource Constrained Edge Computing Systems
Shiqiang Wang
Tiffany Tuor
Theodoros Salonidis
K. Leung
C. Makaya
T. He
Kevin S. Chan
141
1,663
0
14 Apr 2018
1