ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.12187
  4. Cited By
Input Convex Gradient Networks

Input Convex Gradient Networks

23 November 2021
Jack Richter-Powell
Jonathan Lorraine
Brandon Amos
ArXiv (abs)PDFHTML

Papers citing "Input Convex Gradient Networks"

14 / 14 papers shown
Title
Universal Representation of Generalized Convex Functions and their Gradients
Universal Representation of Generalized Convex Functions and their Gradients
Moeen Nehzati
60
0
0
30 Aug 2025
GradNetOT: Learning Optimal Transport Maps with GradNets
GradNetOT: Learning Optimal Transport Maps with GradNets
Shreyas Chaudhari
Srinivasa Pranav
J. M. F. Moura
OT
102
1
0
17 Jul 2025
Gradient Networks
Gradient NetworksIEEE Transactions on Signal Processing (IEEE TSP), 2024
Shreyas Chaudhari
Srinivasa Pranav
J. M. F. Moura
255
0
0
28 Jan 2025
Differentiation Through Black-Box Quadratic Programming Solvers
Differentiation Through Black-Box Quadratic Programming Solvers
Connor W. Magoon
Fengyu Yang
Noam Aigerman
Shahar Z. Kovalsky
304
2
0
08 Oct 2024
JacNet: Learning Functions with Structured Jacobians
JacNet: Learning Functions with Structured Jacobians
Jonathan Lorraine
Safwan Hossain
206
8
0
23 Aug 2024
A solution for the mean parametrization of the von Mises-Fisher
  distribution
A solution for the mean parametrization of the von Mises-Fisher distribution
Marcel Nonnenmacher
M. Sahani
95
1
0
10 Apr 2024
Optimal Flow Matching: Learning Straight Trajectories in Just One Step
Optimal Flow Matching: Learning Straight Trajectories in Just One Step
Nikita Kornilov
Petr Mokrov
Alexander Gasnikov
Alexander Korotin
185
32
0
19 Mar 2024
What's in a Prior? Learned Proximal Networks for Inverse Problems
What's in a Prior? Learned Proximal Networks for Inverse ProblemsInternational Conference on Learning Representations (ICLR), 2023
Zhenghan Fang
Sam Buchanan
Jeremias Sulam
276
22
0
22 Oct 2023
Scalable Optimal Transport Methods in Machine Learning: A Contemporary
  Survey
Scalable Optimal Transport Methods in Machine Learning: A Contemporary SurveyIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2023
Abdelwahed Khamis
Russell Tsuchida
Mohamed Tarek
V. Rolland
Lars Petersson
OT
355
29
0
08 May 2023
The Monge Gap: A Regularizer to Learn All Transport Maps
The Monge Gap: A Regularizer to Learn All Transport MapsInternational Conference on Machine Learning (ICML), 2023
Théo Uscidda
Marco Cuturi
OT
171
32
0
09 Feb 2023
Learning Gradients of Convex Functions with Monotone Gradient Networks
Learning Gradients of Convex Functions with Monotone Gradient NetworksIEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2023
Shreyas Chaudhari
Srinivasa Pranav
J. M. F. Moura
171
9
0
25 Jan 2023
Neural Unbalanced Optimal Transport via Cycle-Consistent Semi-Couplings
Neural Unbalanced Optimal Transport via Cycle-Consistent Semi-Couplings
Frederike Lubeck
Charlotte Bunne
Gabriele Gut
J. Castillo
L. Pelkmans
David Alvarez-Melis
OT
161
23
0
30 Sep 2022
Supervised Training of Conditional Monge Maps
Supervised Training of Conditional Monge MapsNeural Information Processing Systems (NeurIPS), 2022
Charlotte Bunne
Andreas Krause
Marco Cuturi
OT
257
75
0
28 Jun 2022
Efficient Gradient Flows in Sliced-Wasserstein Space
Efficient Gradient Flows in Sliced-Wasserstein Space
Clément Bonet
Nicolas Courty
Franccois Septier
Lucas Drumetz
410
23
0
21 Oct 2021
1