ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.12608
13
22

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

24 November 2021
Xiaoxue Chen
Tianyu Liu
Hao Zhao
Guyue Zhou
Ya-Qin Zhang
ArXivPDFHTML
Abstract

Multi-task indoor scene understanding is widely considered as an intriguing formulation, as the affinity of different tasks may lead to improved performance. In this paper, we tackle the new problem of joint semantic, affordance and attribute parsing. However, successfully resolving it requires a model to capture long-range dependency, learn from weakly aligned data and properly balance sub-tasks during training. To this end, we propose an attention-based architecture named Cerberus and a tailored training framework. Our method effectively addresses the aforementioned challenges and achieves state-of-the-art performance on all three tasks. Moreover, an in-depth analysis shows concept affinity consistent with human cognition, which inspires us to explore the possibility of weakly supervised learning. Surprisingly, Cerberus achieves strong results using only 0.1%-1% annotation. Visualizations further confirm that this success is credited to common attention maps across tasks. Code and models can be accessed at https://github.com/OPEN-AIR-SUN/Cerberus.

View on arXiv
Comments on this paper