ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.12981
  4. Cited By
Efficient Mean Estimation with Pure Differential Privacy via a
  Sum-of-Squares Exponential Mechanism

Efficient Mean Estimation with Pure Differential Privacy via a Sum-of-Squares Exponential Mechanism

25 November 2021
Samuel B. Hopkins
Gautam Kamath
Mahbod Majid
    FedML
ArXivPDFHTML

Papers citing "Efficient Mean Estimation with Pure Differential Privacy via a Sum-of-Squares Exponential Mechanism"

16 / 16 papers shown
Title
Towards Trustworthy Federated Learning with Untrusted Participants
Towards Trustworthy Federated Learning with Untrusted Participants
Youssef Allouah
R. Guerraoui
John Stephan
FedML
46
0
0
03 May 2025
Differential Private Stochastic Optimization with Heavy-tailed Data:
  Towards Optimal Rates
Differential Private Stochastic Optimization with Heavy-tailed Data: Towards Optimal Rates
Puning Zhao
Jiafei Wu
Zhe Liu
Chong Wang
Rongfei Fan
Qingming Li
40
1
0
19 Aug 2024
Private Means and the Curious Incident of the Free Lunch
Private Means and the Curious Incident of the Free Lunch
Jack Fitzsimons
James Honaker
Michael Shoemate
Vikrant Singhal
35
2
0
19 Aug 2024
Polynomial Time and Private Learning of Unbounded Gaussian Mixture
  Models
Polynomial Time and Private Learning of Unbounded Gaussian Mixture Models
Jamil Arbas
H. Ashtiani
Christopher Liaw
40
23
0
07 Mar 2023
On Private and Robust Bandits
On Private and Robust Bandits
Yulian Wu
Xingyu Zhou
Youming Tao
Di Wang
13
5
0
06 Feb 2023
Near Optimal Private and Robust Linear Regression
Near Optimal Private and Robust Linear Regression
Xiyang Liu
Prateek Jain
Weihao Kong
Sewoong Oh
A. Suggala
33
9
0
30 Jan 2023
A Fast Algorithm for Adaptive Private Mean Estimation
A Fast Algorithm for Adaptive Private Mean Estimation
John C. Duchi
Saminul Haque
Rohith Kuditipudi
FedML
19
15
0
17 Jan 2023
Private estimation algorithms for stochastic block models and mixture
  models
Private estimation algorithms for stochastic block models and mixture models
Hongjie Chen
Vincent Cohen-Addad
Tommaso dÓrsi
Alessandro Epasto
Jacob Imola
David Steurer
Stefan Tiegel
FedML
35
19
0
11 Jan 2023
Private Estimation with Public Data
Private Estimation with Public Data
Alex Bie
Gautam Kamath
Vikrant Singhal
28
28
0
16 Aug 2022
New Lower Bounds for Private Estimation and a Generalized Fingerprinting
  Lemma
New Lower Bounds for Private Estimation and a Generalized Fingerprinting Lemma
Gautam Kamath
Argyris Mouzakis
Vikrant Singhal
FedML
34
26
0
17 May 2022
Differentially Private Regression with Unbounded Covariates
Differentially Private Regression with Unbounded Covariates
Jason Milionis
Alkis Kalavasis
Dimitris Fotakis
Stratis Ioannidis
23
10
0
19 Feb 2022
A Private and Computationally-Efficient Estimator for Unbounded
  Gaussians
A Private and Computationally-Efficient Estimator for Unbounded Gaussians
Gautam Kamath
Argyris Mouzakis
Vikrant Singhal
Thomas Steinke
Jonathan R. Ullman
50
39
0
08 Nov 2021
Tight and Robust Private Mean Estimation with Few Users
Tight and Robust Private Mean Estimation with Few Users
Cheng-Han Chiang
Vahab Mirrokni
Hung-yi Lee
FedML
31
28
0
22 Oct 2021
Robust and Differentially Private Mean Estimation
Robust and Differentially Private Mean Estimation
Xiyang Liu
Weihao Kong
Sham Kakade
Sewoong Oh
OOD
FedML
50
75
0
18 Feb 2021
On the Sample Complexity of Privately Learning Unbounded
  High-Dimensional Gaussians
On the Sample Complexity of Privately Learning Unbounded High-Dimensional Gaussians
Ishaq Aden-Ali
H. Ashtiani
Gautam Kamath
40
41
0
19 Oct 2020
Privately Learning High-Dimensional Distributions
Privately Learning High-Dimensional Distributions
Gautam Kamath
Jerry Li
Vikrant Singhal
Jonathan R. Ullman
FedML
69
148
0
01 May 2018
1