ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.00706
  4. Cited By
Clustering Mixtures with Almost Optimal Separation in Polynomial Time

Clustering Mixtures with Almost Optimal Separation in Polynomial Time

1 December 2021
J. Li
Allen Liu
ArXivPDFHTML

Papers citing "Clustering Mixtures with Almost Optimal Separation in Polynomial Time"

17 / 17 papers shown
Title
On Learning Parallel Pancakes with Mostly Uniform Weights
On Learning Parallel Pancakes with Mostly Uniform Weights
Ilias Diakonikolas
D. Kane
Sushrut Karmalkar
Jasper C. H. Lee
Thanasis Pittas
CoGe
44
0
0
21 Apr 2025
Dimension-Free Convergence of Diffusion Models for Approximate Gaussian Mixtures
Dimension-Free Convergence of Diffusion Models for Approximate Gaussian Mixtures
Gen Li
Changxiao Cai
Yuting Wei
DiffM
20
1
0
07 Apr 2025
Efficient Multivariate Robust Mean Estimation Under Mean-Shift Contamination
Efficient Multivariate Robust Mean Estimation Under Mean-Shift Contamination
Ilias Diakonikolas
Giannis Iakovidis
D. Kane
Thanasis Pittas
72
0
0
20 Feb 2025
Entangled Mean Estimation in High-Dimensions
Entangled Mean Estimation in High-Dimensions
Ilias Diakonikolas
D. Kane
Sihan Liu
Thanasis Pittas
33
1
0
10 Jan 2025
Robust Mixture Learning when Outliers Overwhelm Small Groups
Robust Mixture Learning when Outliers Overwhelm Small Groups
Daniil Dmitriev
Rares-Darius Buhai
Stefan Tiegel
Alexander Wolters
Gleb Novikov
Amartya Sanyal
David Steurer
Fanny Yang
27
1
0
22 Jul 2024
Active clustering with bandit feedback
Active clustering with bandit feedback
Victor Thuot
Alexandra Carpentier
Christophe Giraud
Nicolas Verzélen
14
3
0
17 Jun 2024
Clustering Mixtures of Bounded Covariance Distributions Under Optimal
  Separation
Clustering Mixtures of Bounded Covariance Distributions Under Optimal Separation
Ilias Diakonikolas
Daniel M. Kane
Jasper C. H. Lee
Thanasis Pittas
11
2
0
19 Dec 2023
Mixtures of Gaussians are Privately Learnable with a Polynomial Number
  of Samples
Mixtures of Gaussians are Privately Learnable with a Polynomial Number of Samples
Mohammad Afzali
H. Ashtiani
Christopher Liaw
19
5
0
07 Sep 2023
Learning Mixtures of Gaussians Using the DDPM Objective
Learning Mixtures of Gaussians Using the DDPM Objective
Kulin Shah
Sitan Chen
Adam R. Klivans
DiffM
29
37
0
03 Jul 2023
SQ Lower Bounds for Learning Bounded Covariance GMMs
SQ Lower Bounds for Learning Bounded Covariance GMMs
Ilias Diakonikolas
D. Kane
Thanasis Pittas
Nikos Zarifis
17
0
0
22 Jun 2023
Polynomial Time and Private Learning of Unbounded Gaussian Mixture
  Models
Polynomial Time and Private Learning of Unbounded Gaussian Mixture Models
Jamil Arbas
H. Ashtiani
Christopher Liaw
32
23
0
07 Mar 2023
Private estimation algorithms for stochastic block models and mixture
  models
Private estimation algorithms for stochastic block models and mixture models
Hongjie Chen
Vincent Cohen-Addad
Tommaso dÓrsi
Alessandro Epasto
Jacob Imola
David Steurer
Stefan Tiegel
FedML
30
19
0
11 Jan 2023
A Fourier Approach to Mixture Learning
A Fourier Approach to Mixture Learning
Mingda Qiao
Guru Guruganesh
A. S. Rawat
Kumar Avinava Dubey
Manzil Zaheer
7
4
0
05 Oct 2022
Sample Complexity Bounds for Learning High-dimensional Simplices in
  Noisy Regimes
Sample Complexity Bounds for Learning High-dimensional Simplices in Noisy Regimes
Amir Saberi
Amir Najafi
S. Motahari
B. Khalaj
17
2
0
09 Sep 2022
Near-Linear Time and Fixed-Parameter Tractable Algorithms for Tensor
  Decompositions
Near-Linear Time and Fixed-Parameter Tractable Algorithms for Tensor Decompositions
Arvind V. Mahankali
David P. Woodruff
Ziyun Zhang
17
5
0
15 Jul 2022
Beyond Parallel Pancakes: Quasi-Polynomial Time Guarantees for
  Non-Spherical Gaussian Mixtures
Beyond Parallel Pancakes: Quasi-Polynomial Time Guarantees for Non-Spherical Gaussian Mixtures
Rares-Darius Buhai
David Steurer
CoGe
19
3
0
10 Dec 2021
SoS Degree Reduction with Applications to Clustering and Robust Moment
  Estimation
SoS Degree Reduction with Applications to Clustering and Robust Moment Estimation
David Steurer
Stefan Tiegel
19
10
0
05 Jan 2021
1