ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.00911
  4. Cited By
ProtGNN: Towards Self-Explaining Graph Neural Networks

ProtGNN: Towards Self-Explaining Graph Neural Networks

2 December 2021
Zaixin Zhang
Qi Liu
Hao Wang
Chengqiang Lu
Chee-Kong Lee
ArXivPDFHTML

Papers citing "ProtGNN: Towards Self-Explaining Graph Neural Networks"

20 / 20 papers shown
Title
Framework GNN-AID: Graph Neural Network Analysis Interpretation and Defense
Framework GNN-AID: Graph Neural Network Analysis Interpretation and Defense
Kirill Lukyanov
Mikhail Drobyshevskiy
Georgii Sazonov
Mikhail Soloviov
Ilya Makarov
GNN
41
0
0
06 May 2025
Interpretable High-order Knowledge Graph Neural Network for Predicting Synthetic Lethality in Human Cancers
Interpretable High-order Knowledge Graph Neural Network for Predicting Synthetic Lethality in Human Cancers
Xuexin Chen
Ruichu Cai
Zhengting Huang
Zijian Li
Jie Zheng
Min Wu
41
0
0
08 Mar 2025
Recent Advances in Malware Detection: Graph Learning and Explainability
Recent Advances in Malware Detection: Graph Learning and Explainability
Hossein Shokouhinejad
Roozbeh Razavi-Far
Hesamodin Mohammadian
Mahdi Rabbani
Samuel Ansong
Griffin Higgins
Ali Ghorbani
AAML
68
2
0
14 Feb 2025
A Survey of Graph Neural Networks in Real world: Imbalance, Noise,
  Privacy and OOD Challenges
A Survey of Graph Neural Networks in Real world: Imbalance, Noise, Privacy and OOD Challenges
Wei Ju
Siyu Yi
Yifan Wang
Zhiping Xiao
Zhengyan Mao
...
Senzhang Wang
Xinwang Liu
Xiao Luo
Philip S. Yu
Ming Zhang
AI4CE
34
36
0
07 Mar 2024
Robust Ante-hoc Graph Explainer using Bilevel Optimization
Robust Ante-hoc Graph Explainer using Bilevel Optimization
Kha-Dinh Luong
Mert Kosan
A. Silva
Ambuj K. Singh
32
6
0
25 May 2023
Learning Subpocket Prototypes for Generalizable Structure-based Drug
  Design
Learning Subpocket Prototypes for Generalizable Structure-based Drug Design
Zaixin Zhang
Qi Liu
25
34
0
22 May 2023
Self-Explainable Graph Neural Networks for Link Prediction
Self-Explainable Graph Neural Networks for Link Prediction
Huaisheng Zhu
Dongsheng Luo
Xianfeng Tang
Junjie Xu
Hui Liu
Suhang Wang
11
1
0
21 May 2023
Combining Stochastic Explainers and Subgraph Neural Networks can
  Increase Expressivity and Interpretability
Combining Stochastic Explainers and Subgraph Neural Networks can Increase Expressivity and Interpretability
Indro Spinelli
Michele Guerra
F. Bianchi
Simone Scardapane
30
0
0
14 Apr 2023
ICICLE: Interpretable Class Incremental Continual Learning
ICICLE: Interpretable Class Incremental Continual Learning
Dawid Rymarczyk
Joost van de Weijer
Bartosz Zieliñski
Bartlomiej Twardowski
CLL
19
28
0
14 Mar 2023
ProtoSeg: Interpretable Semantic Segmentation with Prototypical Parts
ProtoSeg: Interpretable Semantic Segmentation with Prototypical Parts
Mikolaj Sacha
Dawid Rymarczyk
Lukasz Struski
Jacek Tabor
Bartosz Zieliñski
VLM
25
29
0
28 Jan 2023
CI-GNN: A Granger Causality-Inspired Graph Neural Network for
  Interpretable Brain Network-Based Psychiatric Diagnosis
CI-GNN: A Granger Causality-Inspired Graph Neural Network for Interpretable Brain Network-Based Psychiatric Diagnosis
Kaizhong Zheng
Shujian Yu
Badong Chen
CML
23
31
0
04 Jan 2023
A Comprehensive Survey on Enterprise Financial Risk Analysis from Big Data Perspective
A Comprehensive Survey on Enterprise Financial Risk Analysis from Big Data Perspective
Yu Zhao
Huaming Du
Qing Li
Fuzhen Zhuang
Ji Liu
Gang Kou
Gang Kou
30
1
0
28 Nov 2022
MEGAN: Multi-Explanation Graph Attention Network
MEGAN: Multi-Explanation Graph Attention Network
Jonas Teufel
Luca Torresi
Patrick Reiser
Pascal Friederich
16
8
0
23 Nov 2022
Towards Prototype-Based Self-Explainable Graph Neural Network
Towards Prototype-Based Self-Explainable Graph Neural Network
Enyan Dai
Suhang Wang
25
12
0
05 Oct 2022
L2XGNN: Learning to Explain Graph Neural Networks
L2XGNN: Learning to Explain Graph Neural Networks
G. Serra
Mathias Niepert
31
7
0
28 Sep 2022
Model Inversion Attacks against Graph Neural Networks
Model Inversion Attacks against Graph Neural Networks
Zaixin Zhang
Qi Liu
Zhenya Huang
Hao Wang
Cheekong Lee
Enhong
AAML
15
35
0
16 Sep 2022
Towards Faithful and Consistent Explanations for Graph Neural Networks
Towards Faithful and Consistent Explanations for Graph Neural Networks
Tianxiang Zhao
Dongsheng Luo
Xiang Zhang
Suhang Wang
FAtt
42
18
0
27 May 2022
Trustworthy Graph Neural Networks: Aspects, Methods and Trends
Trustworthy Graph Neural Networks: Aspects, Methods and Trends
He Zhang
Bang Wu
Xingliang Yuan
Shirui Pan
Hanghang Tong
Jian Pei
41
104
0
16 May 2022
Explainability in Graph Neural Networks: A Taxonomic Survey
Explainability in Graph Neural Networks: A Taxonomic Survey
Hao Yuan
Haiyang Yu
Shurui Gui
Shuiwang Ji
164
591
0
31 Dec 2020
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
162
1,775
0
02 Mar 2017
1