ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.02856
  4. Cited By
Doubly Optimal No-Regret Online Learning in Strongly Monotone Games with
  Bandit Feedback

Doubly Optimal No-Regret Online Learning in Strongly Monotone Games with Bandit Feedback

6 December 2021
Wenjia Ba
Tianyi Lin
Jiawei Zhang
Zhengyuan Zhou
ArXivPDFHTML

Papers citing "Doubly Optimal No-Regret Online Learning in Strongly Monotone Games with Bandit Feedback"

2 / 2 papers shown
Title
Linear Convergence of the Primal-Dual Gradient Method for Convex-Concave
  Saddle Point Problems without Strong Convexity
Linear Convergence of the Primal-Dual Gradient Method for Convex-Concave Saddle Point Problems without Strong Convexity
S. Du
Wei Hu
53
120
0
05 Feb 2018
Kernel-based methods for bandit convex optimization
Kernel-based methods for bandit convex optimization
Sébastien Bubeck
Ronen Eldan
Y. Lee
76
163
0
11 Jul 2016
1