ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.03321
  4. Cited By
Noether Networks: Meta-Learning Useful Conserved Quantities

Noether Networks: Meta-Learning Useful Conserved Quantities

6 December 2021
Ferran Alet
Dylan D. Doblar
Allan Zhou
J. Tenenbaum
Kenji Kawaguchi
Chelsea Finn
ArXivPDFHTML

Papers citing "Noether Networks: Meta-Learning Useful Conserved Quantities"

11 / 11 papers shown
Title
Functional Risk Minimization
Functional Risk Minimization
Ferran Alet
Clement Gehring
Tomás Lozano-Pérez
Kenji Kawaguchi
Joshua B. Tenenbaum
Leslie Pack Kaelbling
OffRL
54
0
0
31 Dec 2024
SymmetryLens: A new candidate paradigm for unsupervised symmetry
  learning via locality and equivariance
SymmetryLens: A new candidate paradigm for unsupervised symmetry learning via locality and equivariance
Onur Efe
Arkadas Ozakin
16
0
0
07 Oct 2024
Analysis of the Identifying Regulation with Adversarial Surrogates
  Algorithm
Analysis of the Identifying Regulation with Adversarial Surrogates Algorithm
Ron Teichner
Ron Meir
Michael Margaliot
17
0
0
05 May 2024
Neural Relational Inference with Fast Modular Meta-learning
Neural Relational Inference with Fast Modular Meta-learning
Ferran Alet
Erica Weng
Tomás Lozano Pérez
L. Kaelbling
39
55
0
10 Oct 2023
Constraining Chaos: Enforcing dynamical invariants in the training of
  recurrent neural networks
Constraining Chaos: Enforcing dynamical invariants in the training of recurrent neural networks
Jason A. Platt
S. Penny
T. A. Smith
Tse-Chun Chen
H. Abarbanel
AI4TS
13
5
0
24 Apr 2023
Neural Algorithmic Reasoning with Causal Regularisation
Neural Algorithmic Reasoning with Causal Regularisation
Beatrice Bevilacqua
Kyriacos Nikiforou
Borja Ibarz
Ioana Bica
Michela Paganini
Charles Blundell
Jovana Mitrović
Petar Velivcković
OOD
CML
NAI
24
26
0
20 Feb 2023
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
163
1,095
0
27 Apr 2021
Lagrangian Neural Networks
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
121
364
0
10 Mar 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
237
11,568
0
09 Mar 2017
A Compositional Object-Based Approach to Learning Physical Dynamics
A Compositional Object-Based Approach to Learning Physical Dynamics
Michael Chang
T. Ullman
Antonio Torralba
J. Tenenbaum
AI4CE
OCL
226
438
0
01 Dec 2016
Interaction Networks for Learning about Objects, Relations and Physics
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
252
1,394
0
01 Dec 2016
1