Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2112.03548
Cited By
Private Robust Estimation by Stabilizing Convex Relaxations
7 December 2021
Pravesh Kothari
Pasin Manurangsi
A. Velingker
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Private Robust Estimation by Stabilizing Convex Relaxations"
38 / 38 papers shown
Title
Optimal Differentially Private Sampling of Unbounded Gaussians
Valentio Iverson
Gautam Kamath
Argyris Mouzakis
46
0
0
03 Mar 2025
SoS Certifiability of Subgaussian Distributions and its Algorithmic Applications
Ilias Diakonikolas
Samuel B. Hopkins
Ankit Pensia
Stefan Tiegel
45
3
0
28 Oct 2024
Private Means and the Curious Incident of the Free Lunch
Jack Fitzsimons
James Honaker
Michael Shoemate
Vikrant Singhal
46
2
0
19 Aug 2024
Distribution Learnability and Robustness
Shai Ben-David
Alex Bie
Gautam Kamath
Tosca Lechner
34
2
0
25 Jun 2024
Perturb-and-Project: Differentially Private Similarities and Marginals
Vincent Cohen-Addad
Tommaso dÓrsi
Alessandro Epasto
Vahab Mirrokni
Peilin Zhong
35
0
0
07 Jun 2024
Private Edge Density Estimation for Random Graphs: Optimal, Efficient and Robust
Hongjie Chen
Jingqiu Ding
Yiding Hua
David Steurer
33
1
0
26 May 2024
On Differentially Private Subspace Estimation in a Distribution-Free Setting
Eliad Tsfadia
25
1
0
09 Feb 2024
Sample-Optimal Locally Private Hypothesis Selection and the Provable Benefits of Interactivity
A. F. Pour
Hassan Ashtiani
S. Asoodeh
41
0
0
09 Dec 2023
Instance-Specific Asymmetric Sensitivity in Differential Privacy
David Durfee
32
1
0
02 Nov 2023
Statistical Barriers to Affine-equivariant Estimation
Zihao Chen
Yeshwanth Cherapanamjeri
56
0
0
16 Oct 2023
Better and Simpler Lower Bounds for Differentially Private Statistical Estimation
Shyam Narayanan
FedML
19
10
0
10 Oct 2023
Mixtures of Gaussians are Privately Learnable with a Polynomial Number of Samples
Mohammad Afzali
H. Ashtiani
Christopher Liaw
32
5
0
07 Sep 2023
Private Distribution Learning with Public Data: The View from Sample Compression
Shai Ben-David
Alex Bie
C. Canonne
Gautam Kamath
Vikrant Singhal
42
11
0
11 Aug 2023
PLAN: Variance-Aware Private Mean Estimation
Martin Aumüller
C. Lebeda
Boel Nelson
Rasmus Pagh
FedML
26
4
0
14 Jun 2023
Robust and differentially private stochastic linear bandits
Vasileios Charisopoulos
Hossein Esfandiari
Vahab Mirrokni
FedML
26
1
0
23 Apr 2023
A Polynomial Time, Pure Differentially Private Estimator for Binary Product Distributions
Vikrant Singhal
34
9
0
13 Apr 2023
Polynomial Time and Private Learning of Unbounded Gaussian Mixture Models
Jamil Arbas
H. Ashtiani
Christopher Liaw
40
23
0
07 Mar 2023
From Robustness to Privacy and Back
Hilal Asi
Jonathan R. Ullman
Lydia Zakynthinou
44
27
0
03 Feb 2023
Near Optimal Private and Robust Linear Regression
Xiyang Liu
Prateek Jain
Weihao Kong
Sewoong Oh
A. Suggala
41
9
0
30 Jan 2023
Fast, Sample-Efficient, Affine-Invariant Private Mean and Covariance Estimation for Subgaussian Distributions
Gavin Brown
Samuel B. Hopkins
Adam D. Smith
FedML
27
17
0
28 Jan 2023
A Fast Algorithm for Adaptive Private Mean Estimation
John C. Duchi
Saminul Haque
Rohith Kuditipudi
FedML
24
15
0
17 Jan 2023
Private estimation algorithms for stochastic block models and mixture models
Hongjie Chen
Vincent Cohen-Addad
Tommaso dÓrsi
Alessandro Epasto
Jacob Imola
David Steurer
Stefan Tiegel
FedML
43
20
0
11 Jan 2023
Privately Estimating a Gaussian: Efficient, Robust and Optimal
Daniel Alabi
Pravesh Kothari
Pranay Tankala
Prayaag Venkat
Fred Zhang
66
0
0
15 Dec 2022
Robustness Implies Privacy in Statistical Estimation
Samuel B. Hopkins
Gautam Kamath
Mahbod Majid
Shyam Narayanan
18
49
0
09 Dec 2022
Privacy Induces Robustness: Information-Computation Gaps and Sparse Mean Estimation
Kristian Georgiev
Samuel B. Hopkins
FedML
36
21
0
01 Nov 2022
Private Estimation with Public Data
Alex Bie
Gautam Kamath
Vikrant Singhal
36
28
0
16 Aug 2022
Differentially Private Covariance Revisited
Wei Dong
Yuting Liang
K. Yi
FedML
23
13
0
28 May 2022
DP-PCA: Statistically Optimal and Differentially Private PCA
Xiyang Liu
Weihao Kong
Prateek Jain
Sewoong Oh
38
21
0
27 May 2022
Differentially Private Regression with Unbounded Covariates
Jason Milionis
Alkis Kalavasis
Dimitris Fotakis
Stratis Ioannidis
23
10
0
19 Feb 2022
On robustness and local differential privacy
Mengchu Li
Thomas B. Berrett
Yi Yu
24
24
0
03 Jan 2022
Private and polynomial time algorithms for learning Gaussians and beyond
H. Ashtiani
Christopher Liaw
60
44
0
22 Nov 2021
A Private and Computationally-Efficient Estimator for Unbounded Gaussians
Gautam Kamath
Argyris Mouzakis
Vikrant Singhal
Thomas Steinke
Jonathan R. Ullman
55
39
0
08 Nov 2021
Universal Private Estimators
Wei Dong
K. Yi
24
19
0
04 Nov 2021
FriendlyCore: Practical Differentially Private Aggregation
Eliad Tsfadia
E. Cohen
Haim Kaplan
Yishay Mansour
Uri Stemmer
20
33
0
19 Oct 2021
Robust and Differentially Private Mean Estimation
Xiyang Liu
Weihao Kong
Sham Kakade
Sewoong Oh
OOD
FedML
53
75
0
18 Feb 2021
On the Sample Complexity of Privately Learning Unbounded High-Dimensional Gaussians
Ishaq Aden-Ali
H. Ashtiani
Gautam Kamath
40
41
0
19 Oct 2020
Privately Learning High-Dimensional Distributions
Gautam Kamath
Jerry Li
Vikrant Singhal
Jonathan R. Ullman
FedML
69
148
0
01 May 2018
Prochlo: Strong Privacy for Analytics in the Crowd
Andrea Bittau
Ulfar Erlingsson
Petros Maniatis
Ilya Mironov
A. Raghunathan
David Lie
Mitch Rudominer
Ushasree Kode
J. Tinnés
B. Seefeld
91
278
0
02 Oct 2017
1