ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.04123
  4. Cited By
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and
  Practical Perspectives

ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

8 December 2021
Toshinori Kitamura
Ryo Yonetani
    OffRL
ArXiv (abs)PDFHTMLGithub (48★)

Papers citing "ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives"

4 / 4 papers shown
Title
Efficiently Quantifying Individual Agent Importance in Cooperative MARL
Efficiently Quantifying Individual Agent Importance in Cooperative MARL
Omayma Mahjoub
Ruan de Kock
Siddarth S. Singh
Wiem Khlifi
Abidine Vall
Kale-ab Tessera
Arnu Pretorius
FAtt
85
2
0
13 Dec 2023
How much can change in a year? Revisiting Evaluation in Multi-Agent
  Reinforcement Learning
How much can change in a year? Revisiting Evaluation in Multi-Agent Reinforcement Learning
Siddarth S. Singh
Omayma Mahjoub
Ruan de Kock
Wiem Khlifi
Abidine Vall
Kale-ab Tessera
Arnu Pretorius
106
1
0
13 Dec 2023
Regularization and Variance-Weighted Regression Achieves Minimax
  Optimality in Linear MDPs: Theory and Practice
Regularization and Variance-Weighted Regression Achieves Minimax Optimality in Linear MDPs: Theory and Practice
Toshinori Kitamura
Tadashi Kozuno
Yunhao Tang
Nino Vieillard
Michal Valko
...
Olivier Pietquin
Matthieu Geist
Csaba Szepesvári
Wataru Kumagai
Yutaka Matsuo
OffRL
90
3
0
22 May 2023
Continual Reinforcement Learning with TELLA
Continual Reinforcement Learning with TELLA
Neil Fendley
Cash Costello
Eric Q. Nguyen
Gino Perrotta
Corey Lowman
CLL
58
2
0
08 Aug 2022
1