ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.04585
  4. Cited By
MASTAF: A Model-Agnostic Spatio-Temporal Attention Fusion Network for
  Few-shot Video Classification

MASTAF: A Model-Agnostic Spatio-Temporal Attention Fusion Network for Few-shot Video Classification

8 December 2021
Rex Liu
Huan Zhang
Hamed Pirsiavash
Xin Liu
    ViT
ArXivPDFHTML

Papers citing "MASTAF: A Model-Agnostic Spatio-Temporal Attention Fusion Network for Few-shot Video Classification"

8 / 8 papers shown
Title
Task-Adapter++: Task-specific Adaptation with Order-aware Alignment for Few-shot Action Recognition
Task-Adapter++: Task-specific Adaptation with Order-aware Alignment for Few-shot Action Recognition
Congqi Cao
Peiheng Han
Y. Zhang
Yating Yu
Qinyi Lv
Lingtong Min
Yanning Zhang
VLM
40
0
0
09 May 2025
TAMT: Temporal-Aware Model Tuning for Cross-Domain Few-Shot Action Recognition
TAMT: Temporal-Aware Model Tuning for Cross-Domain Few-Shot Action Recognition
Yilong Wang
Zilin Gao
Qilong Wang
Zhaofeng Chen
P. Li
Q. Hu
80
1
0
28 Nov 2024
A Comprehensive Review of Few-shot Action Recognition
A Comprehensive Review of Few-shot Action Recognition
Yuyang Wanyan
Xiaoshan Yang
Weiming Dong
Changsheng Xu
VLM
67
3
0
20 Jul 2024
VidTr: Video Transformer Without Convolutions
VidTr: Video Transformer Without Convolutions
Yanyi Zhang
Xinyu Li
Chunhui Liu
Bing Shuai
Yi Zhu
Biagio Brattoli
Hao Chen
I. Marsic
Joseph Tighe
ViT
136
193
0
23 Apr 2021
CrossTransformers: spatially-aware few-shot transfer
CrossTransformers: spatially-aware few-shot transfer
Carl Doersch
Ankush Gupta
Andrew Zisserman
ViT
201
330
0
22 Jul 2020
Cross Attention Network for Few-shot Classification
Cross Attention Network for Few-shot Classification
Rui Hou
Hong Chang
Bingpeng Ma
Shiguang Shan
Xilin Chen
204
629
0
17 Oct 2019
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness
  of MAML
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML
Aniruddh Raghu
M. Raghu
Samy Bengio
Oriol Vinyals
177
639
0
19 Sep 2019
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
317
11,681
0
09 Mar 2017
1