ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.04590
  4. Cited By
The perils of being unhinged: On the accuracy of classifiers minimizing
  a noise-robust convex loss
v1v2 (latest)

The perils of being unhinged: On the accuracy of classifiers minimizing a noise-robust convex loss

8 December 2021
Philip M. Long
Rocco A. Servedio
ArXiv (abs)PDFHTML

Papers citing "The perils of being unhinged: On the accuracy of classifiers minimizing a noise-robust convex loss"

1 / 1 papers shown
Title
Smoothly Giving up: Robustness for Simple Models
Smoothly Giving up: Robustness for Simple Models
Tyler Sypherd
Nathan Stromberg
Richard Nock
Visar Berisha
Lalitha Sankar
78
1
0
17 Feb 2023
1