ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.05090
  4. Cited By
Extending the WILDS Benchmark for Unsupervised Adaptation

Extending the WILDS Benchmark for Unsupervised Adaptation

9 December 2021
Shiori Sagawa
Pang Wei Koh
Tony Lee
Irena Gao
Sang Michael Xie
Kendrick Shen
Ananya Kumar
Weihua Hu
Michihiro Yasunaga
Henrik Marklund
Sara Beery
Etienne David
Ian Stavness
Wei Guo
J. Leskovec
Kate Saenko
Tatsunori Hashimoto
Sergey Levine
Chelsea Finn
Percy Liang
    OOD
ArXivPDFHTML

Papers citing "Extending the WILDS Benchmark for Unsupervised Adaptation"

21 / 21 papers shown
Title
SKADA-Bench: Benchmarking Unsupervised Domain Adaptation Methods with Realistic Validation On Diverse Modalities
SKADA-Bench: Benchmarking Unsupervised Domain Adaptation Methods with Realistic Validation On Diverse Modalities
Yanis Lalou
Théo Gnassounou
Antoine Collas
Antoine de Mathelin
Oleksii Kachaiev
Ambroise Odonnat
Alexandre Gramfort
Thomas Moreau
Rémi Flamary
79
0
0
16 Jul 2024
What Does Softmax Probability Tell Us about Classifiers Ranking Across
  Diverse Test Conditions?
What Does Softmax Probability Tell Us about Classifiers Ranking Across Diverse Test Conditions?
Weijie Tu
Weijian Deng
Liang Zheng
Tom Gedeon
32
0
0
14 Jun 2024
CLIPLoss and Norm-Based Data Selection Methods for Multimodal
  Contrastive Learning
CLIPLoss and Norm-Based Data Selection Methods for Multimodal Contrastive Learning
Yiping Wang
Yifang Chen
Wendan Yan
Alex Fang
Wenjing Zhou
Kevin G. Jamieson
S. Du
32
7
0
29 May 2024
Transfer Learning for T-Cell Response Prediction
Transfer Learning for T-Cell Response Prediction
Josua Stadelmaier
Brandon Malone
Ralf Eggeling
21
0
0
18 Mar 2024
Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift
Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift
Benjamin Eyre
Elliot Creager
David Madras
Antonio Torralba
Katherine Heller
OOD
OODD
30
1
0
29 Dec 2023
COSTAR: Improved Temporal Counterfactual Estimation with Self-Supervised
  Learning
COSTAR: Improved Temporal Counterfactual Estimation with Self-Supervised Learning
Chuizheng Meng
Yihe Dong
Sercan Ö. Arik
Yan Liu
Tomas Pfister
CML
AI4TS
16
0
0
01 Nov 2023
Assessing and Enhancing Robustness of Deep Learning Models with
  Corruption Emulation in Digital Pathology
Assessing and Enhancing Robustness of Deep Learning Models with Corruption Emulation in Digital Pathology
Peixiang Huang
Songtao Zhang
Yulu Gan
Rui Xu
Rongqi Zhu
Wenkang Qin
Limei Guo
Shan Jiang
Lin Luo
25
4
0
31 Oct 2023
Gradual Domain Adaptation: Theory and Algorithms
Gradual Domain Adaptation: Theory and Algorithms
Yifei He
Haoxiang Wang
Bo Li
Han Zhao
CLL
41
5
0
20 Oct 2023
Learning to Drive Anywhere
Learning to Drive Anywhere
Ruizhao Zhu
Peng Huang
Eshed Ohn-Bar
Venkatesh Saligrama
25
6
0
21 Sep 2023
Test-Time Poisoning Attacks Against Test-Time Adaptation Models
Test-Time Poisoning Attacks Against Test-Time Adaptation Models
Tianshuo Cong
Xinlei He
Yun Shen
Yang Zhang
AAML
TTA
19
5
0
16 Aug 2023
Causality-oriented robustness: exploiting general noise interventions
Causality-oriented robustness: exploiting general noise interventions
Xinwei Shen
Peter Buhlmann
Armeen Taeb
OOD
47
7
0
18 Jul 2023
Distributional Shift Adaptation using Domain-Specific Features
Distributional Shift Adaptation using Domain-Specific Features
Anique Tahir
Lu Cheng
Ruocheng Guo
Huan Liu
VLM
TTA
OOD
OODD
20
2
0
09 Nov 2022
Okapi: Generalising Better by Making Statistical Matches Match
Okapi: Generalising Better by Making Statistical Matches Match
Myles Bartlett
Sara Romiti
V. Sharmanska
Novi Quadrianto
32
3
0
07 Nov 2022
On Feature Learning in the Presence of Spurious Correlations
On Feature Learning in the Presence of Spurious Correlations
Pavel Izmailov
Polina Kirichenko
Nate Gruver
A. Wilson
24
116
0
20 Oct 2022
The Value of Out-of-Distribution Data
The Value of Out-of-Distribution Data
Ashwin De Silva
Rahul Ramesh
Carey E. Priebe
Pratik Chaudhari
Joshua T. Vogelstein
OODD
16
11
0
23 Aug 2022
Estimating Test Performance for AI Medical Devices under Distribution
  Shift with Conformal Prediction
Estimating Test Performance for AI Medical Devices under Distribution Shift with Conformal Prediction
Charles Lu
Syed Rakin Ahmed
Praveer Singh
Jayashree Kalpathy-Cramer
OOD
25
5
0
12 Jul 2022
Shifts 2.0: Extending The Dataset of Real Distributional Shifts
Shifts 2.0: Extending The Dataset of Real Distributional Shifts
A. Malinin
A. Athanasopoulos
M. Barakovic
Meritxell Bach Cuadra
Mark J. F. Gales
...
Francesco La Rosa
Eli Sivena
V. Tsarsitalidis
Efi Tsompopoulou
E. Volf
OOD
22
28
0
30 Jun 2022
Last Layer Re-Training is Sufficient for Robustness to Spurious
  Correlations
Last Layer Re-Training is Sufficient for Robustness to Spurious Correlations
Polina Kirichenko
Pavel Izmailov
A. Wilson
OOD
29
314
0
06 Apr 2022
In-N-Out: Pre-Training and Self-Training using Auxiliary Information for
  Out-of-Distribution Robustness
In-N-Out: Pre-Training and Self-Training using Auxiliary Information for Out-of-Distribution Robustness
Sang Michael Xie
Ananya Kumar
Robbie Jones
Fereshte Khani
Tengyu Ma
Percy Liang
OOD
158
62
0
08 Dec 2020
Teacher-Student chain for efficient semi-supervised histology image
  classification
Teacher-Student chain for efficient semi-supervised histology image classification
Shayne Shaw
Maciej Pajak
Aneta Lisowska
Sotirios A. Tsaftaris
Alison Q. OÑeil
29
25
0
17 Mar 2020
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
162
1,775
0
02 Mar 2017
1