ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.10890
28
0
v1v2v3 (latest)

Revisiting Game Representations: The Hidden Costs of Efficiency in Sequential Decision-making Algorithms

20 December 2021
Vojtěch Kovařík
David Milec
Michal Sustr
Dominik Seitz
Viliam Lisý
ArXiv (abs)PDFHTML
Abstract

Recent advancements in algorithms for sequential decision-making under imperfect information have shown remarkable success in large games such as limit- and no-limit poker. These algorithms traditionally formalize the games using the extensive-form game formalism, which, as we show, while theoretically sound, is memory-inefficient and computationally intensive in practice. To mitigate these challenges, a popular workaround involves using a specialized representation based on player specific information-state trees. However, as we show, this alternative significantly narrows the set of games that can be represented efficiently. In this study, we identify the set of large games on which modern algorithms have been benchmarked as being naturally represented by Sequential Bayesian Games. We elucidate the critical differences between extensive-form game and sequential Bayesian game representations, both theoretically and empirically. We further argue that the impressive experimental results often cited in the literature may be skewed, as they frequently stem from testing these algorithms only on this restricted class of games. By understanding these nuances, we aim to guide future research in developing more universally applicable and efficient algorithms for sequential decision-making under imperfect information.

View on arXiv
Comments on this paper