Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2112.13097
Cited By
Faster Rates for Compressed Federated Learning with Client-Variance Reduction
24 December 2021
Haoyu Zhao
Konstantin Burlachenko
Zhize Li
Peter Richtárik
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Faster Rates for Compressed Federated Learning with Client-Variance Reduction"
7 / 7 papers shown
Title
Federated Learning is Better with Non-Homomorphic Encryption
Konstantin Burlachenko
Abdulmajeed Alrowithi
Fahad Ali Albalawi
Peter Richtárik
FedML
32
6
0
04 Dec 2023
Convergence and Privacy of Decentralized Nonconvex Optimization with Gradient Clipping and Communication Compression
Boyue Li
Yuejie Chi
21
12
0
17 May 2023
Coresets for Vertical Federated Learning: Regularized Linear Regression and
K
K
K
-Means Clustering
Lingxiao Huang
Zhize Li
Jialin Sun
Haoyu Zhao
FedML
31
9
0
26 Oct 2022
FL_PyTorch: optimization research simulator for federated learning
Konstantin Burlachenko
Samuel Horváth
Peter Richtárik
FedML
29
18
0
07 Feb 2022
BEER: Fast
O
(
1
/
T
)
O(1/T)
O
(
1/
T
)
Rate for Decentralized Nonconvex Optimization with Communication Compression
Haoyu Zhao
Boyue Li
Zhize Li
Peter Richtárik
Yuejie Chi
19
48
0
31 Jan 2022
EF21 with Bells & Whistles: Practical Algorithmic Extensions of Modern Error Feedback
Ilyas Fatkhullin
Igor Sokolov
Eduard A. Gorbunov
Zhize Li
Peter Richtárik
44
44
0
07 Oct 2021
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
184
411
0
14 Jul 2021
1