ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.01235
  4. Cited By
On the Minimal Adversarial Perturbation for Deep Neural Networks with
  Provable Estimation Error

On the Minimal Adversarial Perturbation for Deep Neural Networks with Provable Estimation Error

4 January 2022
Fabio Brau
Giulio Rossolini
Alessandro Biondi
Giorgio Buttazzo
    AAML
ArXivPDFHTML

Papers citing "On the Minimal Adversarial Perturbation for Deep Neural Networks with Provable Estimation Error"

3 / 3 papers shown
Title
Benchmarking the Spatial Robustness of DNNs via Natural and Adversarial Localized Corruptions
Benchmarking the Spatial Robustness of DNNs via Natural and Adversarial Localized Corruptions
Giulia Marchiori Pietrosanti
Giulio Rossolini
Alessandro Biondi
Giorgio Buttazzo
AAML
89
0
0
02 Apr 2025
CNN-Cert: An Efficient Framework for Certifying Robustness of
  Convolutional Neural Networks
CNN-Cert: An Efficient Framework for Certifying Robustness of Convolutional Neural Networks
Akhilan Boopathy
Tsui-Wei Weng
Pin-Yu Chen
Sijia Liu
Luca Daniel
AAML
108
138
0
29 Nov 2018
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
249
1,842
0
03 Feb 2017
1