Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2201.01305
Cited By
Augmenting astrophysical scaling relations with machine learning: application to reducing the Sunyaev-Zeldovich flux-mass scatter
4 January 2022
D. Wadekar
L. Thiele
F. Villaescusa-Navarro
J. Hill
M. Cranmer
D. Spergel
N. Battaglia
D. Anglés-Alcázar
L. Hernquist
S. Ho
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Augmenting astrophysical scaling relations with machine learning: application to reducing the Sunyaev-Zeldovich flux-mass scatter"
4 / 4 papers shown
Title
The CAMELS Multifield Dataset: Learning the Universe's Fundamental Parameters with Artificial Intelligence
F. Villaescusa-Navarro
S. Genel
D. Anglés-Alcázar
L. Thiele
R. Davé
...
Luis Fernando Machado Poletti Valle
L. A. Perez
D. Nagai
N. Battaglia
M. Vogelsberger
19
47
0
22 Sep 2021
Robust marginalization of baryonic effects for cosmological inference at the field level
F. Villaescusa-Navarro
S. Genel
D. Anglés-Alcázar
D. Spergel
Yin Li
...
Helen Shao
Sultan Hassan
D. Narayanan
R. Davé
M. Vogelsberger
20
15
0
21 Sep 2021
Multifield Cosmology with Artificial Intelligence
F. Villaescusa-Navarro
D. Anglés-Alcázar
S. Genel
D. Spergel
Yin Li
...
Sultan Hassan
J. Z. Matilla
D. Narayanan
R. Davé
M. Vogelsberger
AI4CE
33
20
0
20 Sep 2021
Learning Symbolic Physics with Graph Networks
M. Cranmer
Rui Xu
Peter W. Battaglia
S. Ho
PINN
AI4CE
183
83
0
12 Sep 2019
1