ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.03043
  4. Cited By
Semantics-driven Attentive Few-shot Learning over Clean and Noisy
  Samples

Semantics-driven Attentive Few-shot Learning over Clean and Noisy Samples

9 January 2022
Orhun Bugra Baran
Ramazan Gokberk Cinbics
ArXivPDFHTML

Papers citing "Semantics-driven Attentive Few-shot Learning over Clean and Noisy Samples"

3 / 3 papers shown
Title
TaskNorm: Rethinking Batch Normalization for Meta-Learning
TaskNorm: Rethinking Batch Normalization for Meta-Learning
J. Bronskill
Jonathan Gordon
James Requeima
Sebastian Nowozin
Richard E. Turner
71
89
0
06 Mar 2020
Delta-encoder: an effective sample synthesis method for few-shot object
  recognition
Delta-encoder: an effective sample synthesis method for few-shot object recognition
Eli Schwartz
Leonid Karlinsky
J. Shtok
Sivan Harary
Mattias Marder
Rogerio Feris
Abhishek Kumar
Raja Giryes
A. Bronstein
186
351
0
12 Jun 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
329
11,681
0
09 Mar 2017
1