ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.04976
  4. Cited By
Data-Driven Modeling and Prediction of Non-Linearizable Dynamics via
  Spectral Submanifolds

Data-Driven Modeling and Prediction of Non-Linearizable Dynamics via Spectral Submanifolds

13 January 2022
Mattia Cenedese
Joar Axås
Bastian Bäuerlein
Kerstin Avila
George Haller
ArXiv (abs)PDFHTML

Papers citing "Data-Driven Modeling and Prediction of Non-Linearizable Dynamics via Spectral Submanifolds"

19 / 19 papers shown
Title
A discrete physics-informed training for projection-based reduced order models with neural networks
A discrete physics-informed training for projection-based reduced order models with neural networks
N. Sibuet
S. A. D. Parga
J. R. Bravo
R. Rossi
61
0
0
31 Mar 2025
Hybrid Time-Domain Behavior Model Based on Neural Differential Equations and RNNs
Hybrid Time-Domain Behavior Model Based on Neural Differential Equations and RNNs
Zenghui Chang
Yang Zhang
Hu Tan
Hong Cai Chen
60
0
0
28 Mar 2025
Data-Driven Soft Robot Control via Adiabatic Spectral Submanifolds
Roshan S. Kaundinya
J. I. Alora
Jonas G. Matt
Luis A. Pabon
Marco Pavone
George Haller
83
0
0
13 Mar 2025
On the relationship between Koopman operator approximations and neural ordinary differential equations for data-driven time-evolution predictions
On the relationship between Koopman operator approximations and neural ordinary differential equations for data-driven time-evolution predictions
Jake Buzhardt
C. Ricardo Constante-Amores
Michael D. Graham
171
2
0
20 Nov 2024
Distributed computing for physics-based data-driven reduced modeling at scale: Application to a rotating detonation rocket engine
Distributed computing for physics-based data-driven reduced modeling at scale: Application to a rotating detonation rocket engine
Ionut-Gabriel Farcas
Rayomand P. Gundevia
R. Munipalli
Karen E. Willcox
AI4CE
120
1
0
13 Jul 2024
Machine-learning invariant foliations in forced systems for reduced
  order modelling
Machine-learning invariant foliations in forced systems for reduced order modelling
R. Szalai
59
1
0
21 Mar 2024
Information theory for data-driven model reduction in physics and
  biology
Information theory for data-driven model reduction in physics and biology
Matthew S. Schmitt
Maciej Koch-Janusz
Michel Fruchart
Daniel S. Seara
Michael Rust
Vincenzo Vitelli
85
5
0
11 Dec 2023
Generative learning for nonlinear dynamics
Generative learning for nonlinear dynamics
William Gilpin
AI4CEPINN
123
27
0
07 Nov 2023
Mori-Zwanzig latent space Koopman closure for nonlinear autoencoder
Mori-Zwanzig latent space Koopman closure for nonlinear autoencoder
Priyam Gupta
Peter J. Schmid
D. Sipp
T. Sayadi
Georgios Rigas
118
5
0
16 Oct 2023
Robust Nonlinear Reduced-Order Model Predictive Control
Robust Nonlinear Reduced-Order Model Predictive Control
J. I. Alora
Luis A. Pabon
Johannes Köhler
Mattia Cenedese
Edward Schmerling
Melanie Zeilinger
George Haller
Marco Pavone
40
3
0
11 Sep 2023
Learning Nonlinear Projections for Reduced-Order Modeling of Dynamical
  Systems using Constrained Autoencoders
Learning Nonlinear Projections for Reduced-Order Modeling of Dynamical Systems using Constrained Autoencoders
Samuel E. Otto
G. Macchio
C. Rowley
AI4CE
59
22
0
28 Jul 2023
Discovering Causal Relations and Equations from Data
Discovering Causal Relations and Equations from Data
Gustau Camps-Valls
Andreas Gerhardus
Urmi Ninad
Gherardo Varando
Georg Martius
E. Balaguer-Ballester
Ricardo Vinuesa
Emiliano Díaz
L. Zanna
Jakob Runge
PINNAI4ClAI4CECML
108
77
0
21 May 2023
Latent Dynamics Networks (LDNets): learning the intrinsic dynamics of
  spatio-temporal processes
Latent Dynamics Networks (LDNets): learning the intrinsic dynamics of spatio-temporal processes
Francesco Regazzoni
S. Pagani
M. Salvador
Luca Dede'
A. Quarteroni
AI4CE
55
7
0
28 Apr 2023
Benchmarking sparse system identification with low-dimensional chaos
Benchmarking sparse system identification with low-dimensional chaos
A. Kaptanoglu
Lanyue Zhang
Zachary G. Nicolaou
Urban Fasel
Steven L. Brunton
103
24
0
04 Feb 2023
Changes from Classical Statistics to Modern Statistics and Data Science
Changes from Classical Statistics to Modern Statistics and Data Science
Kai Zhang
Shan-Yu Liu
M. Xiong
92
0
0
30 Oct 2022
Data-Driven Spectral Submanifold Reduction for Nonlinear Optimal Control
  of High-Dimensional Robots
Data-Driven Spectral Submanifold Reduction for Nonlinear Optimal Control of High-Dimensional Robots
J. I. Alora
Mattia Cenedese
Edward Schmerling
George Haller
Marco Pavone
173
31
0
13 Sep 2022
Data-driven reduced order models using invariant foliations, manifolds
  and autoencoders
Data-driven reduced order models using invariant foliations, manifolds and autoencoders
R. Szalai
AI4CE
55
10
0
24 Jun 2022
Enhancing Computational Fluid Dynamics with Machine Learning
Enhancing Computational Fluid Dynamics with Machine Learning
Ricardo Vinuesa
Steven L. Brunton
AI4CE
188
385
0
05 Oct 2021
Data-driven Nonlinear Model Reduction to Spectral Submanifolds in
  Mechanical Systems
Data-driven Nonlinear Model Reduction to Spectral Submanifolds in Mechanical Systems
Mattia Cenedese
Joar Axås
Haocheng Yang
M. Eriten
George Haller
154
41
0
05 Oct 2021
1