ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.07708
  4. Cited By
Debiased Graph Neural Networks with Agnostic Label Selection Bias

Debiased Graph Neural Networks with Agnostic Label Selection Bias

19 January 2022
Shaohua Fan
Xiao Wang
Chuan Shi
Kun Kuang
Nian Liu
Bai Wang
    AI4CE
ArXivPDFHTML

Papers citing "Debiased Graph Neural Networks with Agnostic Label Selection Bias"

12 / 12 papers shown
Title
Graph Fairness Learning under Distribution Shifts
Graph Fairness Learning under Distribution Shifts
Yibo Li
Xiao Wang
Yujie Xing
Shaohua Fan
Ruijia Wang
Yaoqi Liu
Chuan Shi
OOD
31
7
0
30 Jan 2024
When Graph Neural Network Meets Causality: Opportunities, Methodologies
  and An Outlook
When Graph Neural Network Meets Causality: Opportunities, Methodologies and An Outlook
Wenzhao Jiang
Hao Liu
Hui Xiong
CML
AI4CE
24
2
0
19 Dec 2023
Predicting the Silent Majority on Graphs: Knowledge Transferable Graph
  Neural Network
Predicting the Silent Majority on Graphs: Knowledge Transferable Graph Neural Network
Wendong Bi
Bingbing Xu
Xiaoqian Sun
Li Xu
Huawei Shen
Xueqi Cheng
20
16
0
02 Feb 2023
Directed Acyclic Graph Structure Learning from Dynamic Graphs
Directed Acyclic Graph Structure Learning from Dynamic Graphs
Shaohua Fan
Shuyang Zhang
Xiao Wang
Chuan Shi
CML
31
5
0
30 Nov 2022
Trustworthy Graph Neural Networks: Aspects, Methods and Trends
Trustworthy Graph Neural Networks: Aspects, Methods and Trends
He Zhang
Bang Wu
Xingliang Yuan
Shirui Pan
Hanghang Tong
Jian Pei
41
104
0
16 May 2022
Stable Prediction on Graphs with Agnostic Distribution Shift
Stable Prediction on Graphs with Agnostic Distribution Shift
Shengyu Zhang
Kun Kuang
J. Qiu
Jin Yu
Zhou Zhao
Hongxia Yang
Zhongfei Zhang
Fei Wu
OOD
34
8
0
08 Oct 2021
Does Invariant Risk Minimization Capture Invariance?
Does Invariant Risk Minimization Capture Invariance?
Pritish Kamath
Akilesh Tangella
Danica J. Sutherland
Nathan Srebro
OOD
185
125
0
04 Jan 2021
Beyond Low-frequency Information in Graph Convolutional Networks
Beyond Low-frequency Information in Graph Convolutional Networks
Deyu Bo
Xiao Wang
C. Shi
Huawei Shen
GNN
87
556
0
04 Jan 2021
Out-of-Distribution Generalization via Risk Extrapolation (REx)
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
900
0
02 Mar 2020
Representation Learning on Graphs with Jumping Knowledge Networks
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
229
1,941
0
09 Jun 2018
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
162
1,766
0
02 Mar 2017
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,811
0
25 Nov 2016
1