Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2201.08786
Cited By
FedComm: Federated Learning as a Medium for Covert Communication
21 January 2022
Dorjan Hitaj
Giulio Pagnotta
B. Hitaj
F. Pérez-Cruz
L. Mancini
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"FedComm: Federated Learning as a Medium for Covert Communication"
8 / 8 papers shown
Title
Adversarial Challenges in Network Intrusion Detection Systems: Research Insights and Future Prospects
Sabrine Ennaji
Fabio De Gaspari
Dorjan Hitaj
Alicia Kbidi
Luigi V. Mancini
AAML
32
0
0
27 Sep 2024
Have You Poisoned My Data? Defending Neural Networks against Data Poisoning
Fabio De Gaspari
Dorjan Hitaj
Luigi V. Mancini
AAML
TDI
17
4
0
20 Mar 2024
DOLOS: A Novel Architecture for Moving Target Defense
Giulio Pagnotta
Fabio De Gaspari
Dorjan Hitaj
M. Andreolini
M. Colajanni
L. Mancini
AAML
16
12
0
01 Mar 2023
TATTOOED: A Robust Deep Neural Network Watermarking Scheme based on Spread-Spectrum Channel Coding
Giulio Pagnotta
Dorjan Hitaj
B. Hitaj
F. Pérez-Cruz
L. Mancini
14
5
0
12 Feb 2022
PassFlow: Guessing Passwords with Generative Flows
Giulio Pagnotta
Dorjan Hitaj
Fabio De Gaspari
L. Mancini
8
13
0
13 May 2021
Turning Federated Learning Systems Into Covert Channels
Gabriele Costa
Fabio Pinelli
S. Soderi
Gabriele Tolomei
FedML
37
10
0
21 Apr 2021
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
264
10,344
0
12 Dec 2018
Analyzing Federated Learning through an Adversarial Lens
A. Bhagoji
Supriyo Chakraborty
Prateek Mittal
S. Calo
FedML
177
1,032
0
29 Nov 2018
1