ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.09656
  4. Cited By
A singular Riemannian geometry approach to Deep Neural Networks I.
  Theoretical foundations

A singular Riemannian geometry approach to Deep Neural Networks I. Theoretical foundations

17 December 2021
A. Benfenati
A. Marta
ArXivPDFHTML

Papers citing "A singular Riemannian geometry approach to Deep Neural Networks I. Theoretical foundations"

4 / 4 papers shown
Title
GeloVec: Higher Dimensional Geometric Smoothing for Coherent Visual Feature Extraction in Image Segmentation
GeloVec: Higher Dimensional Geometric Smoothing for Coherent Visual Feature Extraction in Image Segmentation
Boris Kriuk
Matey Yordanov
31
0
0
02 May 2025
Neural networks learn to magnify areas near decision boundaries
Neural networks learn to magnify areas near decision boundaries
Jacob A. Zavatone-Veth
Sheng Yang
Julian Rubinfien
C. Pehlevan
MLT
AI4CE
13
6
0
26 Jan 2023
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,801
0
25 Nov 2016
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
231
3,202
0
24 Nov 2016
1