Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2201.09656
Cited By
A singular Riemannian geometry approach to Deep Neural Networks I. Theoretical foundations
17 December 2021
A. Benfenati
A. Marta
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A singular Riemannian geometry approach to Deep Neural Networks I. Theoretical foundations"
4 / 4 papers shown
Title
GeloVec: Higher Dimensional Geometric Smoothing for Coherent Visual Feature Extraction in Image Segmentation
Boris Kriuk
Matey Yordanov
31
0
0
02 May 2025
Neural networks learn to magnify areas near decision boundaries
Jacob A. Zavatone-Veth
Sheng Yang
Julian Rubinfien
C. Pehlevan
MLT
AI4CE
13
6
0
26 Jan 2023
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,801
0
25 Nov 2016
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
231
3,202
0
24 Nov 2016
1