ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.10001
  4. Cited By
E-ADDA: Unsupervised Adversarial Domain Adaptation Enhanced by a New
  Mahalanobis Distance Loss for Smart Computing

E-ADDA: Unsupervised Adversarial Domain Adaptation Enhanced by a New Mahalanobis Distance Loss for Smart Computing

24 January 2022
Ye Gao
Brian R. Baucom
Karen Rose
Kristin D. Gordon
Hongning Wang
John A. Stankovic
    AAML
ArXivPDFHTML

Papers citing "E-ADDA: Unsupervised Adversarial Domain Adaptation Enhanced by a New Mahalanobis Distance Loss for Smart Computing"

Title
No papers