ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.10095
  4. Cited By
RecShard: Statistical Feature-Based Memory Optimization for
  Industry-Scale Neural Recommendation

RecShard: Statistical Feature-Based Memory Optimization for Industry-Scale Neural Recommendation

25 January 2022
Geet Sethi
Bilge Acun
Niket Agarwal
Christos Kozyrakis
Caroline Trippel
Carole-Jean Wu
ArXivPDFHTML

Papers citing "RecShard: Statistical Feature-Based Memory Optimization for Industry-Scale Neural Recommendation"

9 / 9 papers shown
Title
ElasticRec: A Microservice-based Model Serving Architecture Enabling
  Elastic Resource Scaling for Recommendation Models
ElasticRec: A Microservice-based Model Serving Architecture Enabling Elastic Resource Scaling for Recommendation Models
Yujeong Choi
Jiin Kim
Minsoo Rhu
19
1
0
11 Jun 2024
Fine-Grained Embedding Dimension Optimization During Training for
  Recommender Systems
Fine-Grained Embedding Dimension Optimization During Training for Recommender Systems
Qinyi Luo
Penghan Wang
Wei Zhang
Fan Lai
Jiachen Mao
...
Jun Song
Wei-Yu Tsai
Shuai Yang
Yuxi Hu
Xuehai Qian
29
0
0
09 Jan 2024
RecD: Deduplication for End-to-End Deep Learning Recommendation Model
  Training Infrastructure
RecD: Deduplication for End-to-End Deep Learning Recommendation Model Training Infrastructure
Mark Zhao
Dhruv Choudhary
Devashish Tyagi
A. Somani
Max Kaplan
...
Jongsoo Park
Aarti Basant
Niket Agarwal
Carole-Jean Wu
Christos Kozyrakis
VLM
8
6
0
09 Nov 2022
DreamShard: Generalizable Embedding Table Placement for Recommender
  Systems
DreamShard: Generalizable Embedding Table Placement for Recommender Systems
Daochen Zha
Louis Feng
Qiaoyu Tan
Zirui Liu
Kwei-Herng Lai
Bhargav Bhushanam
Yuandong Tian
A. Kejariwal
Xia Hu
LMTD
OffRL
15
28
0
05 Oct 2022
Understanding Data Storage and Ingestion for Large-Scale Deep
  Recommendation Model Training
Understanding Data Storage and Ingestion for Large-Scale Deep Recommendation Model Training
Mark Zhao
Niket Agarwal
Aarti Basant
B. Gedik
Satadru Pan
...
Kevin Wilfong
Harsha Rastogi
Carole-Jean Wu
Christos Kozyrakis
Parikshit Pol
GNN
13
70
0
20 Aug 2021
Learning to Embed Categorical Features without Embedding Tables for
  Recommendation
Learning to Embed Categorical Features without Embedding Tables for Recommendation
Wang-Cheng Kang
D. Cheng
Tiansheng Yao
Xinyang Yi
Ting-Li Chen
Lichan Hong
Ed H. Chi
LMTD
CML
DML
41
67
0
21 Oct 2020
Deep Learning Training in Facebook Data Centers: Design of Scale-up and
  Scale-out Systems
Deep Learning Training in Facebook Data Centers: Design of Scale-up and Scale-out Systems
Maxim Naumov
John Kim
Dheevatsa Mudigere
Srinivas Sridharan
Xiaodong Wang
...
Krishnakumar Nair
Isabel Gao
Bor-Yiing Su
Jiyan Yang
M. Smelyanskiy
GNN
28
83
0
20 Mar 2020
Distributed Hierarchical GPU Parameter Server for Massive Scale Deep
  Learning Ads Systems
Distributed Hierarchical GPU Parameter Server for Massive Scale Deep Learning Ads Systems
Weijie Zhao
Deping Xie
Ronglai Jia
Yulei Qian
Rui Ding
Mingming Sun
P. Li
MoE
55
147
0
12 Mar 2020
RecNMP: Accelerating Personalized Recommendation with Near-Memory
  Processing
RecNMP: Accelerating Personalized Recommendation with Near-Memory Processing
Liu Ke
Udit Gupta
Carole-Jean Wu
B. Cho
Mark Hempstead
...
Dheevatsa Mudigere
Maxim Naumov
Martin D. Schatz
M. Smelyanskiy
Xiaodong Wang
36
210
0
30 Dec 2019
1