ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.10972
  4. Cited By
How Robust are Discriminatively Trained Zero-Shot Learning Models?

How Robust are Discriminatively Trained Zero-Shot Learning Models?

26 January 2022
M. K. Yucel
R. G. Cinbis
Pinar Duygulu
ArXivPDFHTML

Papers citing "How Robust are Discriminatively Trained Zero-Shot Learning Models?"

5 / 5 papers shown
Title
Finding Waldo: Towards Efficient Exploration of NeRF Scene Spaces
Finding Waldo: Towards Efficient Exploration of NeRF Scene Spaces
Evangelos Skartados
M. K. Yucel
Bruno Manganelli
Anastasios Drosou
Albert Saà-Garriga
29
4
0
07 Mar 2024
A Modular System for Enhanced Robustness of Multimedia Understanding
  Networks via Deep Parametric Estimation
A Modular System for Enhanced Robustness of Multimedia Understanding Networks via Deep Parametric Estimation
F. Barbato
Umberto Michieli
Mehmet Karim Yucel
Pietro Zanuttigh
Mete Ozay
23
2
0
28 Feb 2024
HybridAugment++: Unified Frequency Spectra Perturbations for Model
  Robustness
HybridAugment++: Unified Frequency Spectra Perturbations for Model Robustness
M. K. Yucel
R. G. Cinbis
Pinar Duygulu
AAML
33
10
0
21 Jul 2023
Language-Driven Anchors for Zero-Shot Adversarial Robustness
Language-Driven Anchors for Zero-Shot Adversarial Robustness
Xiao-Li Li
Wei Emma Zhang
Yining Liu
Zhan Hu
Bo-Wen Zhang
Xiaolin Hu
26
8
0
30 Jan 2023
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
263
5,833
0
08 Jul 2016
1