Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2201.12417
Cited By
Why Should I Trust You, Bellman? The Bellman Error is a Poor Replacement for Value Error
28 January 2022
Scott Fujimoto
D. Meger
Doina Precup
Ofir Nachum
S. Gu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Why Should I Trust You, Bellman? The Bellman Error is a Poor Replacement for Value Error"
22 / 22 papers shown
Title
Model Selection for Off-policy Evaluation: New Algorithms and Experimental Protocol
Pai Liu
Lingfeng Zhao
Shivangi Agarwal
Jinghan Liu
Audrey Huang
P. Amortila
Nan Jiang
OODD
OffRL
96
0
0
11 Feb 2025
Towards General-Purpose Model-Free Reinforcement Learning
Scott Fujimoto
P. DÓro
Amy Zhang
Yuandong Tian
Michael Rabbat
OffRL
36
3
0
28 Jan 2025
β
\beta
β
-DQN: Improving Deep Q-Learning By Evolving the Behavior
Hongming Zhang
Fengshuo Bai
Chenjun Xiao
Chao Gao
Bo Xu
Martin Müller
OffRL
25
2
0
03 Jan 2025
Efficient Offline Reinforcement Learning: The Critic is Critical
Adam Jelley
Trevor A. McInroe
Sam Devlin
Amos Storkey
OffRL
37
1
0
19 Jun 2024
Is Value Learning Really the Main Bottleneck in Offline RL?
Seohong Park
Kevin Frans
Sergey Levine
Aviral Kumar
OffRL
43
7
0
13 Jun 2024
Finding good policies in average-reward Markov Decision Processes without prior knowledge
Adrienne Tuynman
Rémy Degenne
Emilie Kaufmann
31
2
0
27 May 2024
Koopman-Assisted Reinforcement Learning
Preston Rozwood
Edward Mehrez
Ludger Paehler
Wen Sun
Steven L. Brunton
32
6
0
04 Mar 2024
Understanding and Addressing the Pitfalls of Bisimulation-based Representations in Offline Reinforcement Learning
Hongyu Zang
Xin-hui Li
Leiji Zhang
Yang Liu
Baigui Sun
Riashat Islam
Rémi Tachet des Combes
Romain Laroche
OffRL
27
5
0
26 Oct 2023
LLQL: Logistic Likelihood Q-Learning for Reinforcement Learning
Outongyi Lv
Bingxin Zhou
OffRL
36
0
0
05 Jul 2023
For SALE: State-Action Representation Learning for Deep Reinforcement Learning
Scott Fujimoto
Wei-Di Chang
Edward James Smith
S. Gu
Doina Precup
D. Meger
OffRL
23
44
0
04 Jun 2023
Learning from Integral Losses in Physics Informed Neural Networks
Ehsan Saleh
Saba Ghaffari
Timothy Bretl
Luke N. Olson
Matthew West
PINN
AI4CE
25
4
0
27 May 2023
Graph Reinforcement Learning for Network Control via Bi-Level Optimization
Daniele Gammelli
James Harrison
Kaidi Yang
Marco Pavone
Filipe Rodrigues
Francisco Câmara Pereira
AI4CE
20
6
0
16 May 2023
Optimal Goal-Reaching Reinforcement Learning via Quasimetric Learning
Tongzhou Wang
Antonio Torralba
Phillip Isola
Amy Zhang
OffRL
13
31
0
03 Apr 2023
Distillation Policy Optimization
Jianfei Ma
OffRL
13
1
0
01 Feb 2023
Revisiting Bellman Errors for Offline Model Selection
Joshua P. Zitovsky
Daniel de Marchi
Rishabh Agarwal
Michael R. Kosorok University of North Carolina at Chapel Hill
OffRL
27
5
0
31 Jan 2023
Efficient Policy Evaluation with Offline Data Informed Behavior Policy Design
Shuze Liu
Shangtong Zhang
OffRL
25
3
0
31 Jan 2023
Offline Reinforcement Learning with Closed-Form Policy Improvement Operators
Jiachen Li
Edwin Zhang
Ming Yin
Qinxun Bai
Yu-Xiang Wang
William Yang Wang
OffRL
26
15
0
29 Nov 2022
Disentangling Transfer in Continual Reinforcement Learning
Maciej Wołczyk
Michal Zajkac
Razvan Pascanu
Lukasz Kuciñski
Piotr Milo's
CLL
60
27
0
28 Sep 2022
Learning to Mitigate AI Collusion on Economic Platforms
Gianluca Brero
N. Lepore
Eric Mibuari
David C. Parkes
6
13
0
15 Feb 2022
Tutorial on amortized optimization
Brandon Amos
OffRL
70
42
0
01 Feb 2022
Planning and Learning with Adaptive Lookahead
Aviv A. Rosenberg
Assaf Hallak
Shie Mannor
Gal Chechik
Gal Dalal
19
7
0
28 Jan 2022
Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems
Sergey Levine
Aviral Kumar
George Tucker
Justin Fu
OffRL
GP
329
1,949
0
04 May 2020
1