Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.00137
Cited By
Studying the Robustness of Anti-adversarial Federated Learning Models Detecting Cyberattacks in IoT Spectrum Sensors
31 January 2022
Pedro Miguel Sánchez Sánchez
Alberto Huertas Celdrán
T. Schenk
A. Iten
Gérome Bovet
Gregorio Martínez Pérez
Burkhard Stiller
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Studying the Robustness of Anti-adversarial Federated Learning Models Detecting Cyberattacks in IoT Spectrum Sensors"
5 / 5 papers shown
Title
Enhanced Federated Anomaly Detection Through Autoencoders Using Summary Statistics-Based Thresholding
Sofiane Laridi
Gregory Palmer
Kam-Ming Mark Tam
FedML
21
2
0
11 Oct 2024
SHFL: Secure Hierarchical Federated Learning Framework for Edge Networks
Omid Tavallaie
Kanchana Thilakarathna
Suranga Seneviratne
Aruna Seneviratne
Albert Y. Zomaya
FedML
29
2
0
23 Sep 2024
Secure Federated Learning for Cognitive Radio Sensing
Małgorzata Wasilewska
H. Bogucka
H. Vincent Poor
21
17
0
23 Mar 2023
RL and Fingerprinting to Select Moving Target Defense Mechanisms for Zero-day Attacks in IoT
Alberto Huertas Celdrán
Pedro Miguel Sánchez Sánchez
Jan von der Assen
T. Schenk
Gérome Bovet
Gregorio Martínez Pérez
Burkhard Stiller
AAML
27
6
0
30 Dec 2022
Analyzing the Robustness of Decentralized Horizontal and Vertical Federated Learning Architectures in a Non-IID Scenario
Pedro Miguel Sánchez Sánchez
Alberto Huertas Celdrán
Enrique Tomás Martínez Beltrán
Daniel Demeter
Gérome Bovet
Gregorio Martínez Pérez
Burkhard Stiller
AAML
FedML
21
6
0
20 Oct 2022
1