ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.00137
  4. Cited By
Studying the Robustness of Anti-adversarial Federated Learning Models
  Detecting Cyberattacks in IoT Spectrum Sensors

Studying the Robustness of Anti-adversarial Federated Learning Models Detecting Cyberattacks in IoT Spectrum Sensors

31 January 2022
Pedro Miguel Sánchez Sánchez
Alberto Huertas Celdrán
T. Schenk
A. Iten
Gérome Bovet
Gregorio Martínez Pérez
Burkhard Stiller
    AAML
ArXivPDFHTML

Papers citing "Studying the Robustness of Anti-adversarial Federated Learning Models Detecting Cyberattacks in IoT Spectrum Sensors"

5 / 5 papers shown
Title
Enhanced Federated Anomaly Detection Through Autoencoders Using Summary
  Statistics-Based Thresholding
Enhanced Federated Anomaly Detection Through Autoencoders Using Summary Statistics-Based Thresholding
Sofiane Laridi
Gregory Palmer
Kam-Ming Mark Tam
FedML
21
2
0
11 Oct 2024
SHFL: Secure Hierarchical Federated Learning Framework for Edge Networks
SHFL: Secure Hierarchical Federated Learning Framework for Edge Networks
Omid Tavallaie
Kanchana Thilakarathna
Suranga Seneviratne
Aruna Seneviratne
Albert Y. Zomaya
FedML
29
2
0
23 Sep 2024
Secure Federated Learning for Cognitive Radio Sensing
Secure Federated Learning for Cognitive Radio Sensing
Małgorzata Wasilewska
H. Bogucka
H. Vincent Poor
21
17
0
23 Mar 2023
RL and Fingerprinting to Select Moving Target Defense Mechanisms for
  Zero-day Attacks in IoT
RL and Fingerprinting to Select Moving Target Defense Mechanisms for Zero-day Attacks in IoT
Alberto Huertas Celdrán
Pedro Miguel Sánchez Sánchez
Jan von der Assen
T. Schenk
Gérome Bovet
Gregorio Martínez Pérez
Burkhard Stiller
AAML
27
6
0
30 Dec 2022
Analyzing the Robustness of Decentralized Horizontal and Vertical
  Federated Learning Architectures in a Non-IID Scenario
Analyzing the Robustness of Decentralized Horizontal and Vertical Federated Learning Architectures in a Non-IID Scenario
Pedro Miguel Sánchez Sánchez
Alberto Huertas Celdrán
Enrique Tomás Martínez Beltrán
Daniel Demeter
Gérome Bovet
Gregorio Martínez Pérez
Burkhard Stiller
AAML
FedML
21
6
0
20 Oct 2022
1