ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.01141
  4. Cited By
Federated Reinforcement Learning for Collective Navigation of Robotic
  Swarms

Federated Reinforcement Learning for Collective Navigation of Robotic Swarms

2 February 2022
Seongin Na
Tomáš Rouček
Jiří Ulrich
Jan Pikman
T. Krajník
Barry Lennox
F. Arvin
ArXivPDFHTML

Papers citing "Federated Reinforcement Learning for Collective Navigation of Robotic Swarms"

8 / 8 papers shown
Title
FLAME: A Federated Learning Benchmark for Robotic Manipulation
Santiago Bou Betran
A. Longhini
Miguel Vasco
Yuchong Zhang
Danica Kragic
67
0
0
03 Mar 2025
Fed-EC: Bandwidth-Efficient Clustering-Based Federated Learning For
  Autonomous Visual Robot Navigation
Fed-EC: Bandwidth-Efficient Clustering-Based Federated Learning For Autonomous Visual Robot Navigation
Shreya Gummadi
M. V. Gasparino
Deepak Vasisht
Girish Chowdhary
FedML
35
1
0
06 Nov 2024
SPACE: A Python-based Simulator for Evaluating Decentralized Multi-Robot
  Task Allocation Algorithms
SPACE: A Python-based Simulator for Evaluating Decentralized Multi-Robot Task Allocation Algorithms
Inmo Jang
20
0
0
06 Sep 2024
Securing Federated Learning in Robot Swarms using Blockchain Technology
Securing Federated Learning in Robot Swarms using Blockchain Technology
Alexandre Pacheco
Sébastien De Vos
Andreagiovanni Reina
Marco Dorigo
Volker Strobel
23
0
0
03 Sep 2024
Sim-to-Real Deep Reinforcement Learning with Manipulators for
  Pick-and-place
Sim-to-Real Deep Reinforcement Learning with Manipulators for Pick-and-place
Wenxing Liu
Hanlin Niu
R. Skilton
Joaquin Carrasco
22
1
0
17 Sep 2023
Client Selection for Federated Policy Optimization with Environment
  Heterogeneity
Client Selection for Federated Policy Optimization with Environment Heterogeneity
Zhijie Xie
S. H. Song
11
3
0
18 May 2023
System for multi-robotic exploration of underground environments
  CTU-CRAS-NORLAB in the DARPA Subterranean Challenge
System for multi-robotic exploration of underground environments CTU-CRAS-NORLAB in the DARPA Subterranean Challenge
Tomáš Rouček
M. Pecka
P. Čížek
T. Petříček
J. Bayer
...
J. Faigl
Karel Zimmermann
M. Saska
Tomáš Svoboda
T. Krajník
53
35
0
12 Oct 2021
Deep Reinforcement Learning for Autonomous Driving: A Survey
Deep Reinforcement Learning for Autonomous Driving: A Survey
B. R. Kiran
Ibrahim Sobh
V. Talpaert
Patrick Mannion
A. A. Sallab
S. Yogamani
P. Pérez
143
1,628
0
02 Feb 2020
1