ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.01575
  4. Cited By
CoST: Contrastive Learning of Disentangled Seasonal-Trend
  Representations for Time Series Forecasting

CoST: Contrastive Learning of Disentangled Seasonal-Trend Representations for Time Series Forecasting

3 February 2022
Gerald Woo
Chenghao Liu
Doyen Sahoo
Akshat Kumar
Steven C. H. Hoi
    AI4TS
ArXivPDFHTML

Papers citing "CoST: Contrastive Learning of Disentangled Seasonal-Trend Representations for Time Series Forecasting"

3 / 3 papers shown
Title
TSRM: A Lightweight Temporal Feature Encoding Architecture for Time Series Forecasting and Imputation
TSRM: A Lightweight Temporal Feature Encoding Architecture for Time Series Forecasting and Imputation
Robert Leppich
Michael Stenger
Daniel Grillmeyer
Vanessa Borst
Samuel Kounev
AI4TS
AI4CE
28
48
0
26 Apr 2025
A Robust and Efficient Multi-Scale Seasonal-Trend Decomposition
A Robust and Efficient Multi-Scale Seasonal-Trend Decomposition
Linxiao Yang
Qingsong Wen
Bo Yang
Liang Sun
AI4TS
56
10
0
18 Sep 2021
Informer: Beyond Efficient Transformer for Long Sequence Time-Series
  Forecasting
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting
Haoyi Zhou
Shanghang Zhang
J. Peng
Shuai Zhang
Jianxin Li
Hui Xiong
Wan Zhang
AI4TS
122
2,327
0
14 Dec 2020
1