ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.01889
  4. Cited By
Generalizing to New Physical Systems via Context-Informed Dynamics Model

Generalizing to New Physical Systems via Context-Informed Dynamics Model

1 February 2022
Matthieu Kirchmeyer
Yuan Yin
Jérémie Donà
Nicolas Baskiotis
A. Rakotomamonjy
Patrick Gallinari
    OOD
    AI4CE
ArXivPDFHTML

Papers citing "Generalizing to New Physical Systems via Context-Informed Dynamics Model"

13 / 13 papers shown
Title
DISCO: learning to DISCover an evolution Operator for multi-physics-agnostic prediction
DISCO: learning to DISCover an evolution Operator for multi-physics-agnostic prediction
Rudy Morel
Jiequn Han
Edouard Oyallon
AI4CE
51
0
0
28 Apr 2025
Meta-Dynamical State Space Models for Integrative Neural Data Analysis
Meta-Dynamical State Space Models for Integrative Neural Data Analysis
Ayesha Vermani
Josue Nassar
Hyungju Jeon
Matthew Dowling
Il Memming Park
24
1
0
07 Oct 2024
Learning Interpretable Hierarchical Dynamical Systems Models from Time Series Data
Learning Interpretable Hierarchical Dynamical Systems Models from Time Series Data
Manuel Brenner
Elias Weber
G. Koppe
Daniel Durstewitz
AI4TS
AI4CE
22
2
0
07 Oct 2024
Zebra: In-Context and Generative Pretraining for Solving Parametric PDEs
Zebra: In-Context and Generative Pretraining for Solving Parametric PDEs
Louis Serrano
Armand K. Koupai
Thomas X. Wang
Pierre Erbacher
Patrick Gallinari
AI4CE
21
3
0
04 Oct 2024
Strategies for Pretraining Neural Operators
Strategies for Pretraining Neural Operators
Anthony Y. Zhou
Cooper Lorsung
AmirPouya Hemmasian
Amir Barati Farimani
AI4CE
34
4
0
12 Jun 2024
Interpretable Meta-Learning of Physical Systems
Interpretable Meta-Learning of Physical Systems
Matthieu Blanke
Marc Lelarge
AI4CE
12
4
0
01 Dec 2023
CONFIDE: Contextual Finite Differences Modelling of PDEs
CONFIDE: Contextual Finite Differences Modelling of PDEs
Ori Linial
Orly Avner
Dotan Di Castro
19
0
0
28 Mar 2023
MetaPhysiCa: OOD Robustness in Physics-informed Machine Learning
MetaPhysiCa: OOD Robustness in Physics-informed Machine Learning
S Chandra Mouli
M. A. Alam
Bruno Ribeiro
OOD
8
4
0
06 Mar 2023
Fourier Neural Operator for Parametric Partial Differential Equations
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
197
2,254
0
18 Oct 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
888
0
02 Mar 2020
Symplectic Recurrent Neural Networks
Symplectic Recurrent Neural Networks
Zhengdao Chen
Jianyu Zhang
Martín Arjovsky
Léon Bottou
139
219
0
29 Sep 2019
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness
  of MAML
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML
Aniruddh Raghu
M. Raghu
Samy Bengio
Oriol Vinyals
170
634
0
19 Sep 2019
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
237
11,568
0
09 Mar 2017
1