ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.02264
  4. Cited By
De-Sequentialized Monte Carlo: a parallel-in-time particle smoother

De-Sequentialized Monte Carlo: a parallel-in-time particle smoother

4 February 2022
Adrien Corenflos
Nicolas Chopin
Simo Särkkä
ArXivPDFHTML

Papers citing "De-Sequentialized Monte Carlo: a parallel-in-time particle smoother"

6 / 6 papers shown
Title
Using Autodiff to Estimate Posterior Moments, Marginals and Samples
Using Autodiff to Estimate Posterior Moments, Marginals and Samples
Sam Bowyer
Thomas Heap
Laurence Aitchison
22
1
0
26 Oct 2023
Auxiliary MCMC and particle Gibbs samplers for parallelisable inference in latent dynamical systems
Auxiliary MCMC and particle Gibbs samplers for parallelisable inference in latent dynamical systems
Adrien Corenflos
Simo Särkkä
8
0
0
01 Mar 2023
Temporal Parallelisation of the HJB Equation and Continuous-Time Linear
  Quadratic Control
Temporal Parallelisation of the HJB Equation and Continuous-Time Linear Quadratic Control
Simo Särkkä
Á. F. García-Fernández
23
0
0
22 Dec 2022
A divide and conquer sequential Monte Carlo approach to high dimensional
  filtering
A divide and conquer sequential Monte Carlo approach to high dimensional filtering
F. R. Crucinio
A. M. Johansen
16
3
0
25 Nov 2022
The divide-and-conquer sequential Monte Carlo algorithm: theoretical
  properties and limit theorems
The divide-and-conquer sequential Monte Carlo algorithm: theoretical properties and limit theorems
Juan Kuntz
F. R. Crucinio
A. M. Johansen
11
11
0
29 Oct 2021
Temporal Parallelization of Bayesian Smoothers
Temporal Parallelization of Bayesian Smoothers
Simo Särkkä
Á. F. García-Fernández
122
39
0
30 May 2019
1