ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.02296
  4. Cited By
Graph-Coupled Oscillator Networks

Graph-Coupled Oscillator Networks

4 February 2022
T. Konstantin Rusch
B. Chamberlain
J. Rowbottom
S. Mishra
M. Bronstein
ArXivPDFHTML

Papers citing "Graph-Coupled Oscillator Networks"

21 / 71 papers shown
Title
Node Embedding from Hamiltonian Information Propagation in Graph Neural
  Networks
Node Embedding from Hamiltonian Information Propagation in Graph Neural Networks
Qiyu Kang
Kai Zhao
Yang Song
Sijie Wang
Rui She
Wee Peng Tay
22
0
0
02 Mar 2023
G-Signatures: Global Graph Propagation With Randomized Signatures
G-Signatures: Global Graph Propagation With Randomized Signatures
Bernhard Schafl
Lukas Gruber
Johannes Brandstetter
Sepp Hochreiter
12
2
0
17 Feb 2023
Temporal Graph Neural Networks for Irregular Data
Temporal Graph Neural Networks for Irregular Data
Joel Oskarsson
Per Sidén
Fredrik Lindsten
AI4TS
11
11
0
16 Feb 2023
On Over-Squashing in Message Passing Neural Networks: The Impact of
  Width, Depth, and Topology
On Over-Squashing in Message Passing Neural Networks: The Impact of Width, Depth, and Topology
Francesco Di Giovanni
Lorenzo Giusti
Federico Barbero
Giulia Luise
Pietro Lio'
Michael M. Bronstein
31
108
0
06 Feb 2023
Every Node Counts: Improving the Training of Graph Neural Networks on
  Node Classification
Every Node Counts: Improving the Training of Graph Neural Networks on Node Classification
Moshe Eliasof
E. Haber
Eran Treister
GNN
22
0
0
29 Nov 2022
Revisiting Over-smoothing and Over-squashing Using Ollivier-Ricci
  Curvature
Revisiting Over-smoothing and Over-squashing Using Ollivier-Ricci Curvature
K. Nguyen
Hieu Nong
T. Nguyen
Nhat Ho
Khuong N. Nguyen
Vinh Phu Nguyen
13
61
0
28 Nov 2022
GREAD: Graph Neural Reaction-Diffusion Networks
GREAD: Graph Neural Reaction-Diffusion Networks
Jeongwhan Choi
Seoyoung Hong
Noseong Park
Sung-Bae Cho
DiffM
GNN
16
26
0
25 Nov 2022
Improving Graph Neural Networks with Learnable Propagation Operators
Improving Graph Neural Networks with Learnable Propagation Operators
Moshe Eliasof
Lars Ruthotto
Eran Treister
23
19
0
31 Oct 2022
Anti-Symmetric DGN: a stable architecture for Deep Graph Networks
Anti-Symmetric DGN: a stable architecture for Deep Graph Networks
Alessio Gravina
D. Bacciu
Claudio Gallicchio
GNN
6
50
0
18 Oct 2022
Generalized energy and gradient flow via graph framelets
Generalized energy and gradient flow via graph framelets
Andi Han
Dai Shi
Zhiqi Shao
Junbin Gao
70
13
0
08 Oct 2022
Gradient Gating for Deep Multi-Rate Learning on Graphs
Gradient Gating for Deep Multi-Rate Learning on Graphs
T. Konstantin Rusch
B. Chamberlain
Michael W. Mahoney
Michael M. Bronstein
Siddhartha Mishra
74
53
0
02 Oct 2022
Structural Inference of Networked Dynamical Systems with Universal
  Differential Equations
Structural Inference of Networked Dynamical Systems with Universal Differential Equations
James Koch
Zhao Chen
Aaron Tuor
Ján Drgoňa
D. Vrabie
PINN
21
10
0
11 Jul 2022
Understanding convolution on graphs via energies
Understanding convolution on graphs via energies
Francesco Di Giovanni
J. Rowbottom
B. Chamberlain
Thomas Markovich
Michael M. Bronstein
GNN
18
42
0
22 Jun 2022
ACMP: Allen-Cahn Message Passing for Graph Neural Networks with Particle
  Phase Transition
ACMP: Allen-Cahn Message Passing for Graph Neural Networks with Particle Phase Transition
Yuelin Wang
Kai Yi
Xinliang Liu
Yu Guang Wang
Shi Jin
8
34
0
11 Jun 2022
MGNN: Graph Neural Networks Inspired by Distance Geometry Problem
MGNN: Graph Neural Networks Inspired by Distance Geometry Problem
Guanyu Cui
Zhewei Wei
10
7
0
31 Jan 2022
SkipNode: On Alleviating Performance Degradation for Deep Graph
  Convolutional Networks
SkipNode: On Alleviating Performance Degradation for Deep Graph Convolutional Networks
Weigang Lu
Yibing Zhan
Binbin Lin
Ziyu Guan
Liu Liu
Baosheng Yu
Wei Zhao
Yaming Yang
Dacheng Tao
GNN
13
13
0
22 Dec 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
166
1,095
0
27 Apr 2021
Benchmarking Graph Neural Networks
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
181
907
0
02 Mar 2020
Geom-GCN: Geometric Graph Convolutional Networks
Geom-GCN: Geometric Graph Convolutional Networks
Hongbin Pei
Bingzhen Wei
Kevin Chen-Chuan Chang
Yu Lei
Bo Yang
GNN
167
1,058
0
13 Feb 2020
Representation Learning on Graphs with Jumping Knowledge Networks
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
226
1,935
0
09 Jun 2018
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,801
0
25 Nov 2016
Previous
12