Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.02296
Cited By
Graph-Coupled Oscillator Networks
4 February 2022
T. Konstantin Rusch
B. Chamberlain
J. Rowbottom
S. Mishra
M. Bronstein
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Graph-Coupled Oscillator Networks"
21 / 71 papers shown
Title
Node Embedding from Hamiltonian Information Propagation in Graph Neural Networks
Qiyu Kang
Kai Zhao
Yang Song
Sijie Wang
Rui She
Wee Peng Tay
22
0
0
02 Mar 2023
G-Signatures: Global Graph Propagation With Randomized Signatures
Bernhard Schafl
Lukas Gruber
Johannes Brandstetter
Sepp Hochreiter
12
2
0
17 Feb 2023
Temporal Graph Neural Networks for Irregular Data
Joel Oskarsson
Per Sidén
Fredrik Lindsten
AI4TS
11
11
0
16 Feb 2023
On Over-Squashing in Message Passing Neural Networks: The Impact of Width, Depth, and Topology
Francesco Di Giovanni
Lorenzo Giusti
Federico Barbero
Giulia Luise
Pietro Lio'
Michael M. Bronstein
31
108
0
06 Feb 2023
Every Node Counts: Improving the Training of Graph Neural Networks on Node Classification
Moshe Eliasof
E. Haber
Eran Treister
GNN
22
0
0
29 Nov 2022
Revisiting Over-smoothing and Over-squashing Using Ollivier-Ricci Curvature
K. Nguyen
Hieu Nong
T. Nguyen
Nhat Ho
Khuong N. Nguyen
Vinh Phu Nguyen
13
61
0
28 Nov 2022
GREAD: Graph Neural Reaction-Diffusion Networks
Jeongwhan Choi
Seoyoung Hong
Noseong Park
Sung-Bae Cho
DiffM
GNN
16
26
0
25 Nov 2022
Improving Graph Neural Networks with Learnable Propagation Operators
Moshe Eliasof
Lars Ruthotto
Eran Treister
23
19
0
31 Oct 2022
Anti-Symmetric DGN: a stable architecture for Deep Graph Networks
Alessio Gravina
D. Bacciu
Claudio Gallicchio
GNN
6
50
0
18 Oct 2022
Generalized energy and gradient flow via graph framelets
Andi Han
Dai Shi
Zhiqi Shao
Junbin Gao
70
13
0
08 Oct 2022
Gradient Gating for Deep Multi-Rate Learning on Graphs
T. Konstantin Rusch
B. Chamberlain
Michael W. Mahoney
Michael M. Bronstein
Siddhartha Mishra
74
53
0
02 Oct 2022
Structural Inference of Networked Dynamical Systems with Universal Differential Equations
James Koch
Zhao Chen
Aaron Tuor
Ján Drgoňa
D. Vrabie
PINN
21
10
0
11 Jul 2022
Understanding convolution on graphs via energies
Francesco Di Giovanni
J. Rowbottom
B. Chamberlain
Thomas Markovich
Michael M. Bronstein
GNN
18
42
0
22 Jun 2022
ACMP: Allen-Cahn Message Passing for Graph Neural Networks with Particle Phase Transition
Yuelin Wang
Kai Yi
Xinliang Liu
Yu Guang Wang
Shi Jin
8
34
0
11 Jun 2022
MGNN: Graph Neural Networks Inspired by Distance Geometry Problem
Guanyu Cui
Zhewei Wei
10
7
0
31 Jan 2022
SkipNode: On Alleviating Performance Degradation for Deep Graph Convolutional Networks
Weigang Lu
Yibing Zhan
Binbin Lin
Ziyu Guan
Liu Liu
Baosheng Yu
Wei Zhao
Yaming Yang
Dacheng Tao
GNN
13
13
0
22 Dec 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
166
1,095
0
27 Apr 2021
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
181
907
0
02 Mar 2020
Geom-GCN: Geometric Graph Convolutional Networks
Hongbin Pei
Bingzhen Wei
Kevin Chen-Chuan Chang
Yu Lei
Bo Yang
GNN
167
1,058
0
13 Feb 2020
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
226
1,935
0
09 Jun 2018
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,801
0
25 Nov 2016
Previous
1
2