Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.03060
Cited By
The Importance of Non-Markovianity in Maximum State Entropy Exploration
7 February 2022
Mirco Mutti
Ric De Santi
Marcello Restelli
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Importance of Non-Markovianity in Maximum State Entropy Exploration"
6 / 6 papers shown
Title
Online Episodic Convex Reinforcement Learning
B. Moreno
Khaled Eldowa
Pierre Gaillard
Margaux Brégère
Nadia Oudjane
OffRL
27
0
0
12 May 2025
Enhancing Diversity in Parallel Agents: A Maximum State Entropy Exploration Story
Vincenzo De Paola
Riccardo Zamboni
Mirco Mutti
Marcello Restelli
19
0
0
02 May 2025
Global Reinforcement Learning: Beyond Linear and Convex Rewards via Submodular Semi-gradient Methods
Ric De Santi
Manish Prajapat
Andreas Krause
36
3
0
13 Jul 2024
Policy Gradient Algorithms Implicitly Optimize by Continuation
Adrien Bolland
Gilles Louppe
D. Ernst
31
3
0
11 May 2023
Challenging Common Assumptions in Convex Reinforcement Learning
Mirco Mutti
Ric De Santi
Piersilvio De Bartolomeis
Marcello Restelli
OffRL
24
21
0
03 Feb 2022
Reward-Free Exploration for Reinforcement Learning
Chi Jin
A. Krishnamurthy
Max Simchowitz
Tiancheng Yu
OffRL
104
194
0
07 Feb 2020
1