Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.04648
Cited By
A survey of unsupervised learning methods for high-dimensional uncertainty quantification in black-box-type problems
9 February 2022
Katiana Kontolati
Dimitrios Loukrezis
D. D. Giovanis
Lohit Vandanapu
Michael D. Shields
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A survey of unsupervised learning methods for high-dimensional uncertainty quantification in black-box-type problems"
5 / 5 papers shown
Title
Learning signals defined on graphs with optimal transport and Gaussian process regression
Raphael Carpintero Perez
Sébastien da Veiga
Josselin Garnier
B. Staber
30
1
0
21 Oct 2024
NeurAM: nonlinear dimensionality reduction for uncertainty quantification through neural active manifolds
Andrea Zanoni
Gianluca Geraci
Matteo Salvador
Alison L. Marsden
Daniele E. Schiavazzi
13
1
0
07 Aug 2024
Grassmannian diffusion maps based surrogate modeling via geometric harmonics
K. R. D. dos Santos
Dimitris G. Giovanis
Katiana Kontolati
Dimitrios Loukrezis
Michael D. Shields
17
9
0
28 Sep 2021
Active Learning with Multifidelity Modeling for Efficient Rare Event Simulation
Somayajulu L. N. Dhulipala
Michael D. Shields
B. Spencer
C. Bolisetti
A. Slaughter
V. Labouré
P. Chakroborty
16
24
0
25 Jun 2021
Manifold Gaussian Processes for Regression
Roberto Calandra
Jan Peters
C. Rasmussen
M. Deisenroth
84
271
0
24 Feb 2014
1