ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.05048
  4. Cited By
Quantune: Post-training Quantization of Convolutional Neural Networks
  using Extreme Gradient Boosting for Fast Deployment

Quantune: Post-training Quantization of Convolutional Neural Networks using Extreme Gradient Boosting for Fast Deployment

10 February 2022
Jemin Lee
Misun Yu
Yongin Kwon
Teaho Kim
    MQ
ArXivPDFHTML

Papers citing "Quantune: Post-training Quantization of Convolutional Neural Networks using Extreme Gradient Boosting for Fast Deployment"

2 / 2 papers shown
Title
NITRO-D: Native Integer-only Training of Deep Convolutional Neural
  Networks
NITRO-D: Native Integer-only Training of Deep Convolutional Neural Networks
Alberto Pirillo
Luca Colombo
Manuel Roveri
MQ
21
0
0
16 Jul 2024
Edge AI for Internet of Energy: Challenges and Perspectives
Edge AI for Internet of Energy: Challenges and Perspectives
Yassine Himeur
A. Sayed
A. Alsalemi
F. Bensaali
Abbes Amira
57
26
0
28 Nov 2023
1