Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.05258
Cited By
Hardness of Noise-Free Learning for Two-Hidden-Layer Neural Networks
10 February 2022
Sitan Chen
Aravind Gollakota
Adam R. Klivans
Raghu Meka
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Hardness of Noise-Free Learning for Two-Hidden-Layer Neural Networks"
23 / 23 papers shown
Title
Learning Neural Networks with Distribution Shift: Efficiently Certifiable Guarantees
Gautam Chandrasekaran
Adam R. Klivans
Lin Lin Lee
Konstantinos Stavropoulos
OOD
40
0
0
22 Feb 2025
On the Hardness of Learning One Hidden Layer Neural Networks
Shuchen Li
Ilias Zadik
Manolis Zampetakis
21
2
0
04 Oct 2024
Sequencing the Neurome: Towards Scalable Exact Parameter Reconstruction of Black-Box Neural Networks
Judah Goldfeder
Quinten Roets
Gabe Guo
John Wright
Hod Lipson
33
1
0
27 Sep 2024
Computability of Classification and Deep Learning: From Theoretical Limits to Practical Feasibility through Quantization
Holger Boche
Vít Fojtík
Adalbert Fono
Gitta Kutyniok
35
0
0
12 Aug 2024
Learning Neural Networks with Sparse Activations
Pranjal Awasthi
Nishanth Dikkala
Pritish Kamath
Raghu Meka
36
2
0
26 Jun 2024
Hardness of Learning Neural Networks under the Manifold Hypothesis
B. Kiani
Jason Wang
Melanie Weber
34
2
0
03 Jun 2024
Exploration is Harder than Prediction: Cryptographically Separating Reinforcement Learning from Supervised Learning
Noah Golowich
Ankur Moitra
Dhruv Rohatgi
OffRL
32
4
0
04 Apr 2024
The Benefits of Reusing Batches for Gradient Descent in Two-Layer Networks: Breaking the Curse of Information and Leap Exponents
Yatin Dandi
Emanuele Troiani
Luca Arnaboldi
Luca Pesce
Lenka Zdeborová
Florent Krzakala
MLT
61
25
0
05 Feb 2024
Looped Transformers are Better at Learning Learning Algorithms
Liu Yang
Kangwook Lee
Robert D. Nowak
Dimitris Papailiopoulos
24
24
0
21 Nov 2023
Polynomial-Time Solutions for ReLU Network Training: A Complexity Classification via Max-Cut and Zonotopes
Yifei Wang
Mert Pilanci
26
3
0
18 Nov 2023
Optimizing Solution-Samplers for Combinatorial Problems: The Landscape of Policy-Gradient Methods
C. Caramanis
Dimitris Fotakis
Alkis Kalavasis
Vasilis Kontonis
Christos Tzamos
11
5
0
08 Oct 2023
Efficiently Learning One-Hidden-Layer ReLU Networks via Schur Polynomials
Ilias Diakonikolas
D. Kane
24
4
0
24 Jul 2023
Most Neural Networks Are Almost Learnable
Amit Daniely
Nathan Srebro
Gal Vardi
18
0
0
25 May 2023
Algorithmic Decorrelation and Planted Clique in Dependent Random Graphs: The Case of Extra Triangles
Guy Bresler
Chenghao Guo
Yury Polyanskiy
34
1
0
17 May 2023
Computational Complexity of Learning Neural Networks: Smoothness and Degeneracy
Amit Daniely
Nathan Srebro
Gal Vardi
12
4
0
15 Feb 2023
Learning Single-Index Models with Shallow Neural Networks
A. Bietti
Joan Bruna
Clayton Sanford
M. Song
164
67
0
27 Oct 2022
Magnitude and Angle Dynamics in Training Single ReLU Neurons
Sangmin Lee
Byeongsu Sim
Jong Chul Ye
MLT
94
6
0
27 Sep 2022
Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions
Sitan Chen
Sinho Chewi
Jungshian Li
Yuanzhi Li
Adil Salim
Anru R. Zhang
DiffM
132
246
0
22 Sep 2022
Learning (Very) Simple Generative Models Is Hard
Sitan Chen
Jungshian Li
Yuanzhi Li
17
9
0
31 May 2022
Learning ReLU networks to high uniform accuracy is intractable
Julius Berner
Philipp Grohs
F. Voigtlaender
32
4
0
26 May 2022
Training Fully Connected Neural Networks is
∃
R
\exists\mathbb{R}
∃
R
-Complete
Daniel Bertschinger
Christoph Hertrich
Paul Jungeblut
Tillmann Miltzow
Simon Weber
OffRL
54
30
0
04 Apr 2022
Size and Depth Separation in Approximating Benign Functions with Neural Networks
Gal Vardi
Daniel Reichman
T. Pitassi
Ohad Shamir
21
7
0
30 Jan 2021
From Local Pseudorandom Generators to Hardness of Learning
Amit Daniely
Gal Vardi
109
30
0
20 Jan 2021
1