ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.05400
  4. Cited By
PARSE: Pairwise Alignment of Representations in Semi-Supervised EEG
  Learning for Emotion Recognition

PARSE: Pairwise Alignment of Representations in Semi-Supervised EEG Learning for Emotion Recognition

11 February 2022
Guangyi Zhang
Vandad Davoodnia
Ali Etemad
ArXivPDFHTML

Papers citing "PARSE: Pairwise Alignment of Representations in Semi-Supervised EEG Learning for Emotion Recognition"

5 / 5 papers shown
Title
EEGMatch: Learning with Incomplete Labels for Semi-Supervised EEG-based
  Cross-Subject Emotion Recognition
EEGMatch: Learning with Incomplete Labels for Semi-Supervised EEG-based Cross-Subject Emotion Recognition
Rushuang Zhou
Weishan Ye
Zhiguo Zhang
Yanyang Luo
Li Zhang
Linling Li
G. Huang
Yining Dong
Yuan Zhang
Zhen Liang
19
9
0
27 Mar 2023
Partial Label Learning for Emotion Recognition from EEG
Partial Label Learning for Emotion Recognition from EEG
Guangyi Zhang
Ali Etemad
41
2
0
25 Feb 2023
Holistic Semi-Supervised Approaches for EEG Representation Learning
Holistic Semi-Supervised Approaches for EEG Representation Learning
Guangyi Zhang
Ali Etemad
23
8
0
24 Sep 2021
BENDR: using transformers and a contrastive self-supervised learning
  task to learn from massive amounts of EEG data
BENDR: using transformers and a contrastive self-supervised learning task to learn from massive amounts of EEG data
Demetres Kostas
Stephane Aroca-Ouellette
Frank Rudzicz
SSL
41
202
0
28 Jan 2021
On Data-Augmentation and Consistency-Based Semi-Supervised Learning
On Data-Augmentation and Consistency-Based Semi-Supervised Learning
Atin Ghosh
Alexandre Hoang Thiery
63
20
0
18 Jan 2021
1